本文介绍在3D目标检测中,理解和使用KITTI 数据集,包括KITTI 的基本情况、下载数据集、标签格式解析、3D框可视化、点云转图像、画BEV鸟瞰图等,并配有实现代码。

目录

 1、KITTI数据集3D框可视化

2、KITTI 3D数据集

3、下载数据集

4、标签格式

5、标定参数解析

6、点云数据-->投影到图像

7、图像数据-->投影到点云

8、可视化图像2D结果、3D结果

9、点云3D结果-->图像BEV鸟瞰图结果(坐标系转换)

10、绘制BEV鸟瞰图

11、BEV鸟瞰图画2d框

12、完整工程代码

 1、KITTI数据集3D框可视化

2、KITTI 3D数据集

kitti 3D数据集的基本情况:

KITTI整个数据集是在德国卡尔斯鲁厄采集的,采集时长6小时。KITTI官网放出的数据大约占采集全部的25%,去除了测试集中相关的数据片段,按场景可以分为“道路”、“城市”、“住宅区”、“校园”和“行人”5类。

传感器配置:

传感器安装位置:

3、下载数据集

The KITTI Vision Benchmark Suite (cvlibs.net)

下载数据需要注册账号的,获取取百度网盘下载;文件的格式如下所示

图片格式:xxx.jpg

点云格式:xxx.bin(点云是以bin二进制的方式存储的)

标定参数:xxx.txt(一个文件中包括各个相机的内参、畸变校正矩阵、激光雷达坐标转到相机坐标的矩阵、IMU坐标转到激光雷达坐标的矩阵)

标签格式:xxx.txt(包含类别、截断情况、遮挡情况、观测角度、2D框左上角坐标、2D框右下角坐标、3D物体的尺寸-高宽长、3D物体的中心坐标-xyz、置信度)

4、标签格式

示例标签:Pedestrian 0.00 0 -0.20 712.40 143.00 810.73 307.92 1.89 0.48 1.20 1.84 1.47 8.41 0.01 

这时可以看看这个视频:

Nuscenes、KITTI等多个BEV开源数据集介绍

5、标定参数解析

然后看一下标定参数:

P0-P3:是各个相机的内参矩阵;3×4的相机投影矩阵,0~3分别对应左侧灰度相机、右侧灰度相机、左侧彩色相机、右侧彩色相机。

R0_rect: 是左相机的畸变矫正矩阵;3×3的旋转修正矩阵。

Tr_velo_to_cam:是激光雷达坐标系 转到 相机坐标系矩阵;3×4的激光坐标系到Cam 0坐标系的变换矩阵。

Tr_imu_to_velo: 是IMU坐标转到激光雷达坐标的矩阵;3×4的IMU坐标系到激光坐标系的变换矩阵。

6、点云数据-->投影到图像

当有了点云数据信息,如何投影到图像中呢?本质上是一个坐标系转换的问题,流程思路如下:

已知点云坐标(x,y,z),当前是处于激光雷达坐标系激光雷达坐标系 转到 相机坐标系,需要用到标定参数中的Tr_velo_to_cam矩阵,此时得到相机坐标(x1,y1,z1)相机坐标系进行畸变矫正,需要用到标定参数中的R0_rect矩阵,此时得到相机坐标(x2,y2,z2)相机坐标系转为图像坐标系,需要用到标定参数中的P0矩阵,即相机内存矩阵,此时得到图像坐标(u,v)

看一下示例效果:

接口代码:

'''

将点云数据投影到图像

'''

def show_lidar_on_image(pc_velo, img, calib, img_width, img_height):

''' Project LiDAR points to image '''

imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(pc_velo,

calib, 0, 0, img_width, img_height, True)

imgfov_pts_2d = pts_2d[fov_inds,:]

imgfov_pc_rect = calib.project_velo_to_rect(imgfov_pc_velo)

import matplotlib.pyplot as plt

cmap = plt.cm.get_cmap('hsv', 256)

cmap = np.array([cmap(i) for i in range(256)])[:,:3]*255

for i in range(imgfov_pts_2d.shape[0]):

depth = imgfov_pc_rect[i,2]

color = cmap[int(640.0/depth),:]

cv2.circle(img, (int(np.round(imgfov_pts_2d[i,0])),

int(np.round(imgfov_pts_2d[i,1]))),

2, color=tuple(color), thickness=-1)

Image.fromarray(img).save('save_output/lidar_on_image.png')

Image.fromarray(img).show()

return img

核心代码:

'''

将点云数据投影到相机坐标系

'''

def get_lidar_in_image_fov(pc_velo, calib, xmin, ymin, xmax, ymax,

return_more=False, clip_distance=2.0):

''' Filter lidar points, keep those in image FOV '''

pts_2d = calib.project_velo_to_image(pc_velo)

fov_inds = (pts_2d[:,0]=xmin) & \

(pts_2d[:,1]=ymin)

fov_inds = fov_inds & (pc_velo[:,0]>clip_distance)

imgfov_pc_velo = pc_velo[fov_inds,:]

if return_more:

return imgfov_pc_velo, pts_2d, fov_inds

else:

return imgfov_pc_velo

7、图像数据-->投影到点云

当有了图像RGB信息,如何投影到点云中呢?本质上是一个坐标系转换的问题,和上面的是逆过程,流程思路如下:

已知图像坐标(u,v),当前是处于图像坐标系图像坐标系 转 相机坐标系,需要用到标定参数中的P0逆矩阵,即相机内存矩阵,得到相机坐标(x,y,z)相机坐标系进行畸变矫正,需要用到标定参数中的R0_rect逆矩阵,得到相机坐标(x1,y1,z1)矫正后相机坐标系 转 激光雷达坐标系,需要用到标定参数中的Tr_velo_to_cam逆矩阵,此时得到激光雷达坐标(x2,y2,z2)

8、可视化图像2D结果、3D结果

先看一下2D框的效果:

3D框的效果:

 接口代码:

'''

在图像中画2D框、3D框

'''

def show_image_with_boxes(img, objects, calib, show3d=True):

img1 = np.copy(img) # for 2d bbox

img2 = np.copy(img) # for 3d bbox

for obj in objects:

if obj.type=='DontCare':continue

cv2.rectangle(img1, (int(obj.xmin),int(obj.ymin)), (int(obj.xmax),int(obj.ymax)), (0,255,0), 2) # 画2D框

box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib.P) # 获取图像3D框(8*2)、相机坐标系3D框(8*3)

img2 = utils.draw_projected_box3d(img2, box3d_pts_2d) # 在图像上画3D框

if show3d:

Image.fromarray(img2).save('save_output/image_with_3Dboxes.png')

Image.fromarray(img2).show()

else:

Image.fromarray(img1).save('save_output/image_with_2Dboxes.png')

Image.fromarray(img1).show()

核心代码:

def compute_box_3d(obj, P):

'''

计算对象的3D边界框在图像平面上的投影

输入: obj代表一个物体标签信息, P代表相机的投影矩阵-内参。

输出: 返回两个值, corners_3d表示3D边界框在 相机坐标系 的8个角点的坐标-3D坐标。

corners_2d表示3D边界框在 图像上 的8个角点的坐标-2D坐标。

'''

# 计算一个绕Y轴旋转的旋转矩阵R,用于将3D坐标从世界坐标系转换到相机坐标系。obj.ry是对象的偏航角

R = roty(obj.ry)

# 物体实际的长、宽、高

l = obj.l;

w = obj.w;

h = obj.h;

# 存储了3D边界框的8个角点相对于对象中心的坐标。这些坐标定义了3D边界框的形状。

x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2];

y_corners = [0,0,0,0,-h,-h,-h,-h];

z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2];

# 1、将3D边界框的角点坐标从对象坐标系转换到相机坐标系。它使用了旋转矩阵R

corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners]))

# 3D边界框的坐标进行平移

corners_3d[0,:] = corners_3d[0,:] + obj.t[0];

corners_3d[1,:] = corners_3d[1,:] + obj.t[1];

corners_3d[2,:] = corners_3d[2,:] + obj.t[2];

# 2、检查对象是否在相机前方,因为只有在相机前方的对象才会被绘制。

# 如果对象的Z坐标(深度)小于0.1,就意味着对象在相机后方,那么corners_2d将被设置为None,函数将返回None。

if np.any(corners_3d[2,:]<0.1):

corners_2d = None

return corners_2d, np.transpose(corners_3d)

# 3、将相机坐标系下的3D边界框的角点,投影到图像平面上,得到它们在图像上的2D坐标。

corners_2d = project_to_image(np.transpose(corners_3d), P);

return corners_2d, np.transpose(corners_3d)

def draw_projected_box3d(image, qs, color=(0,60,255), thickness=2):

'''

qs: 包含8个3D边界框角点坐标的数组, 形状为(8, 2)。图像坐标下的3D框, 8个顶点坐标。

'''

''' Draw 3d bounding box in image

qs: (8,2) array of vertices for the 3d box in following order:

1 -------- 0

/| /|

2 -------- 3 .

| | | |

. 5 -------- 4

|/ |/

6 -------- 7

'''

qs = qs.astype(np.int32) # 将输入的顶点坐标转换为整数类型,以便在图像上绘制。

# 这个循环迭代4次,每次处理一个边界框的一条边。

for k in range(0,4):

# Ref: http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html

# 定义了要绘制的边的起始点和结束点的索引。在这个循环中,它用于绘制边界框的前四条边。

i,j=k,(k+1)%4

cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness)

# 定义了要绘制的边的起始点和结束点的索引。在这个循环中,它用于绘制边界框的后四条边,与前四条边平行

i,j=k+4,(k+1)%4 + 4

cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness)

# 定义了要绘制的边的起始点和结束点的索引。在这个循环中,它用于绘制连接前四条边和后四条边的边界框的边。

i,j=k,k+4

cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness)

return image

9、点云3D结果-->图像BEV鸟瞰图结果(坐标系转换)

思路流程:

读取点云数据,点云得存储格式是n*4,n是指当前文件点云的数量,4分别表示(x,y,z,intensity),即点云的空间三维坐标、反射强度我们只需读取前两行即可,得到坐标点(x,y)然后将坐标点(x,y),画散点图

BEV鸟瞰图效果如下:

10、绘制BEV鸟瞰图

BEV图像示例效果:

核心代码:

'''

可视化BEV鸟瞰图

'''

def show_lidar_topview(pc_velo, objects, calib):

# 1-设置鸟瞰图范围

side_range = (-30, 30) # 左右距离

fwd_range = (0, 80) # 后前距离

x_points = pc_velo[:, 0]

y_points = pc_velo[:, 1]

z_points = pc_velo[:, 2]

# 2-获得区域内的点

f_filt = np.logical_and(x_points > fwd_range[0], x_points < fwd_range[1])

s_filt = np.logical_and(y_points > side_range[0], y_points < side_range[1])

filter = np.logical_and(f_filt, s_filt)

indices = np.argwhere(filter).flatten()

x_points = x_points[indices]

y_points = y_points[indices]

z_points = z_points[indices]

# 定义了鸟瞰图中每个像素代表的距离

res = 0.1

# 3-1将点云坐标系 转到 BEV坐标系

x_img = (-y_points / res).astype(np.int32)

y_img = (-x_points / res).astype(np.int32)

# 3-2调整坐标原点

x_img -= int(np.floor(side_range[0]) / res)

y_img += int(np.floor(fwd_range[1]) / res)

print(x_img.min(), x_img.max(), y_img.min(), y_img.max())

# 4-填充像素值, 将点云数据的高度信息(Z坐标)映射到像素值

height_range = (-3, 1.0)

pixel_value = np.clip(a=z_points, a_max=height_range[1], a_min=height_range[0])

def scale_to_255(a, min, max, dtype=np.uint8):

return ((a - min) / float(max - min) * 255).astype(dtype)

pixel_value = scale_to_255(pixel_value, height_range[0], height_range[1])

# 创建图像数组

x_max = 1 + int((side_range[1] - side_range[0]) / res)

y_max = 1 + int((fwd_range[1] - fwd_range[0]) / res)

im = np.zeros([y_max, x_max], dtype=np.uint8)

im[y_img, x_img] = pixel_value

im2 = Image.fromarray(im)

im2.save('save_output/BEV.png')

im2.show()

11、BEV鸟瞰图画2d框

在BEV视图中画框,可视化结果:

接口代码:

'''

将点云数据3D框投影到BEV

'''

def show_lidar_topview_with_boxes(img, objects, calib):

def bbox3d(obj):

box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib.P) # 获取3D框-图像、3D框-相机坐标系

box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d) # 将相机坐标系的框 转到 激光雷达坐标系

return box3d_pts_3d_velo # 返回nx3的点

boxes3d = [bbox3d(obj) for obj in objects if obj.type == "Car"]

gt = np.array(boxes3d)

im2 = utils.draw_box3d_label_on_bev(img, gt, scores=None, thickness=1) # 获取激光雷达坐标系的3D点,选择x, y两维,画到BEV平面坐标系上

im2 = Image.fromarray(im2)

im2.save('save_output/BEV with boxes.png')

im2.show()

核心代码:

# 设置BEV鸟瞰图参数

side_range = (-30, 30) # 左右距离

fwd_range = (0, 80) # 后前距离

res = 0.1 # 分辨率0.05m

def compute_box_3d(obj, P):

'''

计算对象的3D边界框在图像平面上的投影

输入: obj代表一个物体标签信息, P代表相机的投影矩阵-内参。

输出: 返回两个值, corners_3d表示3D边界框在 相机坐标系 的8个角点的坐标-3D坐标。

corners_2d表示3D边界框在 图像上 的8个角点的坐标-2D坐标。

'''

# 计算一个绕Y轴旋转的旋转矩阵R,用于将3D坐标从世界坐标系转换到相机坐标系。obj.ry是对象的偏航角

R = roty(obj.ry)

# 物体实际的长、宽、高

l = obj.l;

w = obj.w;

h = obj.h;

# 存储了3D边界框的8个角点相对于对象中心的坐标。这些坐标定义了3D边界框的形状。

x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2];

y_corners = [0,0,0,0,-h,-h,-h,-h];

z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2];

# 1、将3D边界框的角点坐标从对象坐标系转换到相机坐标系。它使用了旋转矩阵R

corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners]))

# 3D边界框的坐标进行平移

corners_3d[0,:] = corners_3d[0,:] + obj.t[0];

corners_3d[1,:] = corners_3d[1,:] + obj.t[1];

corners_3d[2,:] = corners_3d[2,:] + obj.t[2];

# 2、检查对象是否在相机前方,因为只有在相机前方的对象才会被绘制。

# 如果对象的Z坐标(深度)小于0.1,就意味着对象在相机后方,那么corners_2d将被设置为None,函数将返回None。

if np.any(corners_3d[2,:]<0.1):

corners_2d = None

return corners_2d, np.transpose(corners_3d)

# 3、将相机坐标系下的3D边界框的角点,投影到图像平面上,得到它们在图像上的2D坐标。

corners_2d = project_to_image(np.transpose(corners_3d), P);

return corners_2d, np.transpose(corners_3d)

12、完整工程代码

工程目录:

kitti_vis_main.py(主代码入口)

from __future__ import print_function

import os

import sys

import cv2

import os.path

from PIL import Image

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

ROOT_DIR = os.path.dirname(BASE_DIR)

sys.path.append(BASE_DIR)

sys.path.append(os.path.join(ROOT_DIR, 'mayavi'))

from kitti_object import *

def visualization():

import mayavi.mlab as mlab

dataset = kitti_object(os.path.join(ROOT_DIR, 'Kitti_3D_Vis/dataset/object')) # linux 路径

data_idx = 10 # 选择第几张图像

# 1-加载标签数据

objects = dataset.get_label_objects(data_idx)

print("There are %d objects.", len(objects))

# 2-加载图像

img = dataset.get_image(data_idx)

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

img_height, img_width, img_channel = img.shape

# 3-加载点云数据

pc_velo = dataset.get_lidar(data_idx)[:,0:3] # (x, y, z)

# 4-加载标定参数

calib = dataset.get_calibration(data_idx)

# 5-可视化原始图像

print(' ------------ show raw image -------- ')

Image.fromarray(img).show()

# 6-在图像中画2D框

print(' ------------ show image with 2D bounding box -------- ')

show_image_with_boxes(img, objects, calib, False)

# 7-在图像中画3D框

print(' ------------ show image with 3D bounding box ------- ')

show_image_with_boxes(img, objects, calib, True)

# 8-将点云数据投影到图像

print(' ----------- LiDAR points projected to image plane -- ')

show_lidar_on_image(pc_velo, img, calib, img_width, img_height)

# 9-画BEV图

print('------------------ BEV of LiDAR points -----------------------------')

show_lidar_topview(pc_velo, objects, calib)

# 10-在BEV图中画2D框

print('--------------- BEV of LiDAR points with bobes ---------------------')

img1 = cv2.imread('save_output/BEV.png')

img = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)

show_lidar_topview_with_boxes(img1, objects, calib)

if __name__=='__main__':

visualization()

kitti_util.py

from __future__ import print_function

import numpy as np

import cv2

from PIL import Image

import os

# 设置BEV鸟瞰图参数

side_range = (-30, 30) # 左右距离

fwd_range = (0, 80) # 后前距离

res = 0.1 # 分辨率0.05m

def compute_box_3d(obj, P):

'''

计算对象的3D边界框在图像平面上的投影

输入: obj代表一个物体标签信息, P代表相机的投影矩阵-内参。

输出: 返回两个值, corners_3d表示3D边界框在 相机坐标系 的8个角点的坐标-3D坐标。

corners_2d表示3D边界框在 图像上 的8个角点的坐标-2D坐标。

'''

# 计算一个绕Y轴旋转的旋转矩阵R,用于将3D坐标从世界坐标系转换到相机坐标系。obj.ry是对象的偏航角

R = roty(obj.ry)

# 物体实际的长、宽、高

l = obj.l;

w = obj.w;

h = obj.h;

# 存储了3D边界框的8个角点相对于对象中心的坐标。这些坐标定义了3D边界框的形状。

x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2];

y_corners = [0,0,0,0,-h,-h,-h,-h];

z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2];

# 1、将3D边界框的角点坐标从对象坐标系转换到相机坐标系。它使用了旋转矩阵R

corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners]))

# 3D边界框的坐标进行平移

corners_3d[0,:] = corners_3d[0,:] + obj.t[0];

corners_3d[1,:] = corners_3d[1,:] + obj.t[1];

corners_3d[2,:] = corners_3d[2,:] + obj.t[2];

# 2、检查对象是否在相机前方,因为只有在相机前方的对象才会被绘制。

# 如果对象的Z坐标(深度)小于0.1,就意味着对象在相机后方,那么corners_2d将被设置为None,函数将返回None。

if np.any(corners_3d[2,:]<0.1):

corners_2d = None

return corners_2d, np.transpose(corners_3d)

# 3、将相机坐标系下的3D边界框的角点,投影到图像平面上,得到它们在图像上的2D坐标。

corners_2d = project_to_image(np.transpose(corners_3d), P);

return corners_2d, np.transpose(corners_3d)

def project_to_image(pts_3d, P):

'''

将相机坐标系下的3D边界框的角点, 投影到图像平面上, 得到它们在图像上的2D坐标

输入: pts_3d是一个nx3的矩阵, 包含了待投影的3D坐标点(每行一个点), P是相机的投影矩阵, 通常是一个3x4的矩阵。

输出: 返回一个nx2的矩阵, 包含了投影到图像平面上的2D坐标点。

P(3x4) dot pts_3d_extended(4xn) = projected_pts_2d(3xn) => normalize projected_pts_2d(2xn)

<=> pts_3d_extended(nx4) dot P'(4x3) = projected_pts_2d(nx3) => normalize projected_pts_2d(nx2)

'''

n = pts_3d.shape[0] # 获取3D点的数量

pts_3d_extend = np.hstack((pts_3d, np.ones((n,1)))) # 将每个3D点的坐标扩展为齐次坐标形式(4D),通过在每个点的末尾添加1,创建了一个nx4的矩阵。

pts_2d = np.dot(pts_3d_extend, np.transpose(P)) # 将扩展的3D坐标点矩阵与投影矩阵P相乘,得到一个nx3的矩阵,其中每一行包含了3D点在图像平面上的投影坐标。每个点的坐标表示为[x, y, z]。

pts_2d[:,0] /= pts_2d[:,2] # 将投影坐标中的x坐标除以z坐标,从而获得2D图像上的x坐标。

pts_2d[:,1] /= pts_2d[:,2] # 将投影坐标中的y坐标除以z坐标,从而获得2D图像上的y坐标。

return pts_2d[:,0:2] # 返回一个nx2的矩阵,其中包含了每个3D点在2D图像上的坐标。

def draw_projected_box3d(image, qs, color=(0,60,255), thickness=2):

'''

qs: 包含8个3D边界框角点坐标的数组, 形状为(8, 2)。图像坐标下的3D框, 8个顶点坐标。

'''

''' Draw 3d bounding box in image

qs: (8,2) array of vertices for the 3d box in following order:

1 -------- 0

/| /|

2 -------- 3 .

| | | |

. 5 -------- 4

|/ |/

6 -------- 7

'''

qs = qs.astype(np.int32) # 将输入的顶点坐标转换为整数类型,以便在图像上绘制。

# 这个循环迭代4次,每次处理一个边界框的一条边。

for k in range(0,4):

# Ref: http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html

# 定义了要绘制的边的起始点和结束点的索引。在这个循环中,它用于绘制边界框的前四条边。

i,j=k,(k+1)%4

cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness)

# 定义了要绘制的边的起始点和结束点的索引。在这个循环中,它用于绘制边界框的后四条边,与前四条边平行

i,j=k+4,(k+1)%4 + 4

cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness)

# 定义了要绘制的边的起始点和结束点的索引。在这个循环中,它用于绘制连接前四条边和后四条边的边界框的边。

i,j=k,k+4

cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness)

return image

def draw_box3d_label_on_bev(image, boxes3d, thickness=1, scores=None):

# if scores is not None and scores.shape[0] >0:

img = image.copy()

num = len(boxes3d)

for n in range(num):

b = boxes3d[n]

x0 = b[0, 0]

y0 = b[0, 1]

x1 = b[1, 0]

y1 = b[1, 1]

x2 = b[2, 0]

y2 = b[2, 1]

x3 = b[3, 0]

y3 = b[3, 1]

if (x0<30 and x1<30 and x2<30 and x3<30):

u0, v0 = lidar_to_top_coords(x0, y0)

u1, v1 = lidar_to_top_coords(x1, y1)

u2, v2 = lidar_to_top_coords(x2, y2)

u3, v3 = lidar_to_top_coords(x3, y3)

color = (0, 255, 0) # green

cv2.line(img, (u0, v0), (u1, v1), color, thickness, cv2.LINE_AA)

cv2.line(img, (u1, v1), (u2, v2), color, thickness, cv2.LINE_AA)

cv2.line(img, (u2, v2), (u3, v3), color, thickness, cv2.LINE_AA)

cv2.line(img, (u3, v3), (u0, v0), color, thickness, cv2.LINE_AA)

elif (x0<50 and x1<50 and x2<50 and x3<50):

color = (255, 0, 0) # red

u0, v0 = lidar_to_top_coords(x0, y0)

u1, v1 = lidar_to_top_coords(x1, y1)

u2, v2 = lidar_to_top_coords(x2, y2)

u3, v3 = lidar_to_top_coords(x3, y3)

cv2.line(img, (u0, v0), (u1, v1), color, thickness, cv2.LINE_AA)

cv2.line(img, (u1, v1), (u2, v2), color, thickness, cv2.LINE_AA)

cv2.line(img, (u2, v2), (u3, v3), color, thickness, cv2.LINE_AA)

cv2.line(img, (u3, v3), (u0, v0), color, thickness, cv2.LINE_AA)

else:

color = (0, 0, 255) # blue

u0, v0 = lidar_to_top_coords(x0, y0)

u1, v1 = lidar_to_top_coords(x1, y1)

u2, v2 = lidar_to_top_coords(x2, y2)

u3, v3 = lidar_to_top_coords(x3, y3)

cv2.line(img, (u0, v0), (u1, v1), color, thickness, cv2.LINE_AA)

cv2.line(img, (u1, v1), (u2, v2), color, thickness, cv2.LINE_AA)

cv2.line(img, (u2, v2), (u3, v3), color, thickness, cv2.LINE_AA)

cv2.line(img, (u3, v3), (u0, v0), color, thickness, cv2.LINE_AA)

return img

def draw_box3d_predict_on_bev(image, boxes3d, thickness=1, scores=None):

# if scores is not None and scores.shape[0] >0:

img = image.copy()

num = len(boxes3d)

for n in range(num):

b = boxes3d[n]

x0 = b[0, 0]

y0 = b[0, 1]

x1 = b[1, 0]

y1 = b[1, 1]

x2 = b[2, 0]

y2 = b[2, 1]

x3 = b[3, 0]

y3 = b[3, 1]

color = (255, 255, 255) # white

u0, v0 = lidar_to_top_coords(x0, y0)

u1, v1 = lidar_to_top_coords(x1, y1)

u2, v2 = lidar_to_top_coords(x2, y2)

u3, v3 = lidar_to_top_coords(x3, y3)

cv2.line(img, (u0, v0), (u1, v1), color, thickness, cv2.LINE_AA)

cv2.line(img, (u1, v1), (u2, v2), color, thickness, cv2.LINE_AA)

cv2.line(img, (u2, v2), (u3, v3), color, thickness, cv2.LINE_AA)

cv2.line(img, (u3, v3), (u0, v0), color, thickness, cv2.LINE_AA)

return img

def lidar_to_top_coords(x, y, z=None):

if 0:

return x, y

else:

# print("TOP_X_MAX-TOP_X_MIN:",TOP_X_MAX,TOP_X_MIN)

xx = (-y / res).astype(np.int32)

yy = (-x / res).astype(np.int32)

# 调整坐标原点

xx -= int(np.floor(side_range[0]) / res)

yy += int(np.floor(fwd_range[1]) / res)

return xx, yy

# 解析标签数据

class Object3d(object):

''' 3d object label '''

def __init__(self, label_file_line):

data = label_file_line.split(' ')

data[1:] = [float(x) for x in data[1:]]

# extract label, truncation, occlusion

self.type = data[0] # 'Car', 'Pedestrian', ...

self.truncation = data[1] # truncated pixel ratio [0..1]

self.occlusion = int(data[2]) # 0=visible, 1=partly occluded, 2=fully occluded, 3=unknown

self.alpha = data[3] # object observation angle [-pi..pi]

# extract 2d bounding box in 0-based coordinates

self.xmin = data[4] # left

self.ymin = data[5] # top

self.xmax = data[6] # right

self.ymax = data[7] # bottom

self.box2d = np.array([self.xmin,self.ymin,self.xmax,self.ymax])

# extract 3d bounding box information

self.h = data[8] # box height

self.w = data[9] # box width

self.l = data[10] # box length (in meters)

self.t = (data[11],data[12],data[13]) # location (x,y,z) in camera coord.

self.ry = data[14] # yaw angle (around Y-axis in camera coordinates) [-pi..pi]

def print_object(self):

print('Type, truncation, occlusion, alpha: %s, %d, %d, %f' % \

(self.type, self.truncation, self.occlusion, self.alpha))

print('2d bbox (x0,y0,x1,y1): %f, %f, %f, %f' % \

(self.xmin, self.ymin, self.xmax, self.ymax))

print('3d bbox h,w,l: %f, %f, %f' % \

(self.h, self.w, self.l))

print('3d bbox location, ry: (%f, %f, %f), %f' % \

(self.t[0],self.t[1],self.t[2],self.ry))

class Calibration(object):

''' Calibration matrices and utils

3d XYZ in

2d box xy are in image2 coord

Points in .bin are in Velodyne coord.

y_image2 = P^2_rect * x_rect

y_image2 = P^2_rect * R0_rect * Tr_velo_to_cam * x_velo

x_ref = Tr_velo_to_cam * x_velo

x_rect = R0_rect * x_ref

P^2_rect = [f^2_u, 0, c^2_u, -f^2_u b^2_x;

0, f^2_v, c^2_v, -f^2_v b^2_y;

0, 0, 1, 0]

= K * [1|t]

image2 coord:

----> x-axis (u)

|

|

v y-axis (v)

velodyne coord:

front x, left y, up z

rect/ref camera coord:

right x, down y, front z

Ref (KITTI paper): http://www.cvlibs.net/publications/Geiger2013IJRR.pdf

TODO(rqi): do matrix multiplication only once for each projection.

'''

def __init__(self, calib_filepath, from_video=False):

if from_video:

calibs = self.read_calib_from_video(calib_filepath)

else:

calibs = self.read_calib_file(calib_filepath)

# Projection matrix from rect camera coord to image2 coord

self.P = calibs['P2']

self.P = np.reshape(self.P, [3,4])

# Rigid transform from Velodyne coord to reference camera coord

self.V2C = calibs['Tr_velo_to_cam']

self.V2C = np.reshape(self.V2C, [3,4])

self.C2V = inverse_rigid_trans(self.V2C)

# Rotation from reference camera coord to rect camera coord

self.R0 = calibs['R0_rect']

self.R0 = np.reshape(self.R0,[3,3])

# Camera intrinsics and extrinsics

self.c_u = self.P[0,2]

self.c_v = self.P[1,2]

self.f_u = self.P[0,0]

self.f_v = self.P[1,1]

self.b_x = self.P[0,3]/(-self.f_u) # relative

self.b_y = self.P[1,3]/(-self.f_v)

def read_calib_file(self, filepath):

''' Read in a calibration file and parse into a dictionary.'''

data = {}

with open(filepath, 'r') as f:

for line in f.readlines():

line = line.rstrip()

if len(line)==0: continue

key, value = line.split(':', 1)

# The only non-float values in these files are dates, which

# we don't care about anyway

try:

data[key] = np.array([float(x) for x in value.split()])

except ValueError:

pass

return data

def read_calib_from_video(self, calib_root_dir):

''' Read calibration for camera 2 from video calib files.

there are calib_cam_to_cam and calib_velo_to_cam under the calib_root_dir

'''

data = {}

cam2cam = self.read_calib_file(os.path.join(calib_root_dir, 'calib_cam_to_cam.txt'))

velo2cam = self.read_calib_file(os.path.join(calib_root_dir, 'calib_velo_to_cam.txt'))

Tr_velo_to_cam = np.zeros((3,4))

Tr_velo_to_cam[0:3,0:3] = np.reshape(velo2cam['R'], [3,3])

Tr_velo_to_cam[:,3] = velo2cam['T']

data['Tr_velo_to_cam'] = np.reshape(Tr_velo_to_cam, [12])

data['R0_rect'] = cam2cam['R_rect_00']

data['P2'] = cam2cam['P_rect_02']

return data

def cart2hom(self, pts_3d):

''' Input: nx3 points in Cartesian

Oupput: nx4 points in Homogeneous by pending 1

'''

n = pts_3d.shape[0]

pts_3d_hom = np.hstack((pts_3d, np.ones((n,1))))

return pts_3d_hom

# ===========================

# ------- 3d to 3d ----------

# ===========================

def project_velo_to_ref(self, pts_3d_velo):

pts_3d_velo = self.cart2hom(pts_3d_velo) # nx4

return np.dot(pts_3d_velo, np.transpose(self.V2C))

def project_ref_to_velo(self, pts_3d_ref):

pts_3d_ref = self.cart2hom(pts_3d_ref) # nx4

return np.dot(pts_3d_ref, np.transpose(self.C2V))

def project_rect_to_ref(self, pts_3d_rect):

''' Input and Output are nx3 points '''

return np.transpose(np.dot(np.linalg.inv(self.R0), np.transpose(pts_3d_rect)))

def project_ref_to_rect(self, pts_3d_ref):

''' Input and Output are nx3 points '''

return np.transpose(np.dot(self.R0, np.transpose(pts_3d_ref)))

def project_rect_to_velo(self, pts_3d_rect):

''' Input: nx3 points in rect camera coord.

Output: nx3 points in velodyne coord.

'''

pts_3d_ref = self.project_rect_to_ref(pts_3d_rect)

return self.project_ref_to_velo(pts_3d_ref)

def project_velo_to_rect(self, pts_3d_velo):

pts_3d_ref = self.project_velo_to_ref(pts_3d_velo)

return self.project_ref_to_rect(pts_3d_ref)

def corners3d_to_img_boxes(self, corners3d):

"""

:param corners3d: (N, 8, 3) corners in rect coordinate

:return: boxes: (None, 4) [x1, y1, x2, y2] in rgb coordinate

:return: boxes_corner: (None, 8) [xi, yi] in rgb coordinate

"""

sample_num = corners3d.shape[0]

corners3d_hom = np.concatenate((corners3d, np.ones((sample_num, 8, 1))), axis=2) # (N, 8, 4)

img_pts = np.matmul(corners3d_hom, self.P.T) # (N, 8, 3)

x, y = img_pts[:, :, 0] / img_pts[:, :, 2], img_pts[:, :, 1] / img_pts[:, :, 2]

x1, y1 = np.min(x, axis=1), np.min(y, axis=1)

x2, y2 = np.max(x, axis=1), np.max(y, axis=1)

boxes = np.concatenate((x1.reshape(-1, 1), y1.reshape(-1, 1), x2.reshape(-1, 1), y2.reshape(-1, 1)), axis=1)

boxes_corner = np.concatenate((x.reshape(-1, 8, 1), y.reshape(-1, 8, 1)), axis=2)

return boxes, boxes_corner

# ===========================

# ------- 3d to 2d ----------

# ===========================

def project_rect_to_image(self, pts_3d_rect):

''' Input: nx3 points in rect camera coord.

Output: nx2 points in image2 coord.

'''

pts_3d_rect = self.cart2hom(pts_3d_rect)

pts_2d = np.dot(pts_3d_rect, np.transpose(self.P)) # nx3

pts_2d[:,0] /= pts_2d[:,2]

pts_2d[:,1] /= pts_2d[:,2]

return pts_2d[:,0:2]

def project_velo_to_image(self, pts_3d_velo):

''' Input: nx3 points in velodyne coord.

Output: nx2 points in image2 coord.

'''

pts_3d_rect = self.project_velo_to_rect(pts_3d_velo)

return self.project_rect_to_image(pts_3d_rect)

# ===========================

# ------- 2d to 3d ----------

# ===========================

def project_image_to_rect(self, uv_depth):

''' Input: nx3 first two channels are uv, 3rd channel

is depth in rect camera coord.

Output: nx3 points in rect camera coord.

'''

n = uv_depth.shape[0]

x = ((uv_depth[:,0]-self.c_u)*uv_depth[:,2])/self.f_u + self.b_x

y = ((uv_depth[:,1]-self.c_v)*uv_depth[:,2])/self.f_v + self.b_y

pts_3d_rect = np.zeros((n,3))

pts_3d_rect[:,0] = x

pts_3d_rect[:,1] = y

pts_3d_rect[:,2] = uv_depth[:,2]

return pts_3d_rect

def project_image_to_velo(self, uv_depth):

pts_3d_rect = self.project_image_to_rect(uv_depth)

return self.project_rect_to_velo(pts_3d_rect)

def rotx(t):

''' 3D Rotation about the x-axis. '''

c = np.cos(t)

s = np.sin(t)

return np.array([[1, 0, 0],

[0, c, -s],

[0, s, c]])

def roty(t):

''' Rotation about the y-axis. '''

c = np.cos(t)

s = np.sin(t)

return np.array([[c, 0, s],

[0, 1, 0],

[-s, 0, c]])

def rotz(t):

''' Rotation about the z-axis. '''

c = np.cos(t)

s = np.sin(t)

return np.array([[c, -s, 0],

[s, c, 0],

[0, 0, 1]])

def transform_from_rot_trans(R, t):

''' Transforation matrix from rotation matrix and translation vector. '''

R = R.reshape(3, 3)

t = t.reshape(3, 1)

return np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))

def inverse_rigid_trans(Tr):

''' Inverse a rigid body transform matrix (3x4 as [R|t])

[R'|-R't; 0|1]

'''

inv_Tr = np.zeros_like(Tr) # 3x4

inv_Tr[0:3,0:3] = np.transpose(Tr[0:3,0:3])

inv_Tr[0:3,3] = np.dot(-np.transpose(Tr[0:3,0:3]), Tr[0:3,3])

return inv_Tr

def read_label(label_filename):

lines = [line.rstrip() for line in open(label_filename)]

objects = [Object3d(line) for line in lines]

return objects

def load_image(img_filename):

return cv2.imread(img_filename)

def load_velo_scan(velo_filename):

scan = np.fromfile(velo_filename, dtype=np.float32)

scan = scan.reshape((-1, 4))

return scan

kitti_object.py

from __future__ import print_function

import os

import sys

import cv2

import numpy as np

from PIL import Image

import matplotlib.pyplot as plt

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

ROOT_DIR = os.path.dirname(BASE_DIR)

sys.path.append(os.path.join(ROOT_DIR, 'mayavi'))

import kitti_util as utils

'''

在图像中画2D框、3D框

'''

def show_image_with_boxes(img, objects, calib, show3d=True):

img1 = np.copy(img) # for 2d bbox

img2 = np.copy(img) # for 3d bbox

for obj in objects:

if obj.type=='DontCare':continue

cv2.rectangle(img1, (int(obj.xmin),int(obj.ymin)), (int(obj.xmax),int(obj.ymax)), (0,255,0), 2) # 画2D框

box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib.P) # 获取图像3D框(8*2)、相机坐标系3D框(8*3)

img2 = utils.draw_projected_box3d(img2, box3d_pts_2d) # 在图像上画3D框

if show3d:

Image.fromarray(img2).save('save_output/image_with_3Dboxes.png')

Image.fromarray(img2).show()

else:

Image.fromarray(img1).save('save_output/image_with_2Dboxes.png')

Image.fromarray(img1).show()

'''

可视化BEV鸟瞰图

'''

def show_lidar_topview(pc_velo, objects, calib):

# 1-设置鸟瞰图范围

side_range = (-30, 30) # 左右距离

fwd_range = (0, 80) # 后前距离

x_points = pc_velo[:, 0]

y_points = pc_velo[:, 1]

z_points = pc_velo[:, 2]

# 2-获得区域内的点

f_filt = np.logical_and(x_points > fwd_range[0], x_points < fwd_range[1])

s_filt = np.logical_and(y_points > side_range[0], y_points < side_range[1])

filter = np.logical_and(f_filt, s_filt)

indices = np.argwhere(filter).flatten()

x_points = x_points[indices]

y_points = y_points[indices]

z_points = z_points[indices]

# 定义了鸟瞰图中每个像素代表的距离

res = 0.1

# 3-1将点云坐标系 转到 BEV坐标系

x_img = (-y_points / res).astype(np.int32)

y_img = (-x_points / res).astype(np.int32)

# 3-2调整坐标原点

x_img -= int(np.floor(side_range[0]) / res)

y_img += int(np.floor(fwd_range[1]) / res)

print(x_img.min(), x_img.max(), y_img.min(), y_img.max())

# 4-填充像素值, 将点云数据的高度信息(Z坐标)映射到像素值

height_range = (-3, 1.0)

pixel_value = np.clip(a=z_points, a_max=height_range[1], a_min=height_range[0])

def scale_to_255(a, min, max, dtype=np.uint8):

return ((a - min) / float(max - min) * 255).astype(dtype)

pixel_value = scale_to_255(pixel_value, height_range[0], height_range[1])

# 创建图像数组

x_max = 1 + int((side_range[1] - side_range[0]) / res)

y_max = 1 + int((fwd_range[1] - fwd_range[0]) / res)

im = np.zeros([y_max, x_max], dtype=np.uint8)

im[y_img, x_img] = pixel_value

im2 = Image.fromarray(im)

im2.save('save_output/BEV.png')

im2.show()

'''

将点云数据3D框投影到BEV

'''

def show_lidar_topview_with_boxes(img, objects, calib):

def bbox3d(obj):

box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib.P) # 获取3D框-图像、3D框-相机坐标系

box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d) # 将相机坐标系的框 转到 激光雷达坐标系

return box3d_pts_3d_velo # 返回nx3的点

boxes3d = [bbox3d(obj) for obj in objects if obj.type == "Car"]

gt = np.array(boxes3d)

im2 = utils.draw_box3d_label_on_bev(img, gt, scores=None, thickness=1) # 获取激光雷达坐标系的3D点,选择x, y两维,画到BEV平面坐标系上

im2 = Image.fromarray(im2)

im2.save('save_output/BEV with boxes.png')

im2.show()

'''

将点云数据投影到图像

'''

def show_lidar_on_image(pc_velo, img, calib, img_width, img_height):

''' Project LiDAR points to image '''

imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(pc_velo,

calib, 0, 0, img_width, img_height, True)

imgfov_pts_2d = pts_2d[fov_inds,:]

imgfov_pc_rect = calib.project_velo_to_rect(imgfov_pc_velo)

import matplotlib.pyplot as plt

cmap = plt.cm.get_cmap('hsv', 256)

cmap = np.array([cmap(i) for i in range(256)])[:,:3]*255

for i in range(imgfov_pts_2d.shape[0]):

depth = imgfov_pc_rect[i,2]

color = cmap[int(640.0/depth),:]

cv2.circle(img, (int(np.round(imgfov_pts_2d[i,0])),

int(np.round(imgfov_pts_2d[i,1]))),

2, color=tuple(color), thickness=-1)

Image.fromarray(img).save('save_output/lidar_on_image.png')

Image.fromarray(img).show()

return img

'''

将点云数据投影到相机坐标系

'''

def get_lidar_in_image_fov(pc_velo, calib, xmin, ymin, xmax, ymax,

return_more=False, clip_distance=2.0):

''' Filter lidar points, keep those in image FOV '''

pts_2d = calib.project_velo_to_image(pc_velo)

fov_inds = (pts_2d[:,0]=xmin) & \

(pts_2d[:,1]=ymin)

fov_inds = fov_inds & (pc_velo[:,0]>clip_distance)

imgfov_pc_velo = pc_velo[fov_inds,:]

if return_more:

return imgfov_pc_velo, pts_2d, fov_inds

else:

return imgfov_pc_velo

'''

解析标签

'''

class kitti_object(object):

'''Load and parse object data into a usable format.'''

def __init__(self, root_dir, split='training'):

'''root_dir contains training and testing folders'''

self.root_dir = root_dir

self.split = split

self.split_dir = os.path.join(root_dir, split)

if split == 'training':

self.num_samples = 7481

elif split == 'testing':

self.num_samples = 7518

else:

print('Unknown split: %s' % (split))

exit(-1)

self.image_dir = os.path.join(self.split_dir, 'image_2')

self.calib_dir = os.path.join(self.split_dir, 'calib')

self.lidar_dir = os.path.join(self.split_dir, 'velodyne')

self.label_dir = os.path.join(self.split_dir, 'label_2')

def __len__(self):

return self.num_samples

def get_image(self, idx):

assert(idx

img_filename = os.path.join(self.image_dir, '%06d.png'%(idx))

return utils.load_image(img_filename)

def get_lidar(self, idx):

assert(idx

lidar_filename = os.path.join(self.lidar_dir, '%06d.bin'%(idx))

return utils.load_velo_scan(lidar_filename)

def get_calibration(self, idx):

assert(idx

calib_filename = os.path.join(self.calib_dir, '%06d.txt'%(idx))

return utils.Calibration(calib_filename)

def get_label_objects(self, idx):

assert(idx

label_filename = os.path.join(self.label_dir, '%06d.txt'%(idx))

return utils.read_label(label_filename)

def get_depth_map(self, idx):

pass

def get_top_down(self, idx):

pass

运行程序后kitti_vis_main.py后,回保存5张结果图片

后面还会介绍Nuscenes、Waymo等3D数据集。

相关文章

评论可见,请评论后查看内容,谢谢!!!评论后请刷新页面。