本文仅供学习使用 本文参考: B站:DR_CAN

Dr. CAN学习笔记-数学基础Ch0-7欧拉公式的证明

e

i

θ

=

cos

θ

+

sin

θ

i

,

i

=

1

e^{i\theta}=\cos \theta +\sin \theta i,i=\sqrt{-1}

eiθ=cosθ+sinθi,i=−1

​ 证明:

f

(

θ

)

=

e

i

θ

cos

θ

+

sin

θ

i

f

(

θ

)

=

i

e

i

θ

(

cos

θ

+

sin

θ

i

)

e

i

θ

(

sin

θ

+

cos

θ

i

)

(

cos

θ

+

sin

θ

i

)

2

=

0

f

(

θ

)

=

c

o

n

s

tan

t

f

(

θ

)

=

f

(

0

)

=

e

i

0

cos

0

+

sin

0

i

=

1

e

i

θ

cos

θ

+

sin

θ

i

=

1

e

i

θ

=

cos

θ

+

sin

θ

i

f\left( \theta \right) =\frac{e^{i\theta}}{\cos \theta +\sin \theta i} \\ f^{\prime}\left( \theta \right) =\frac{ie^{i\theta}\left( \cos \theta +\sin \theta i \right) -e^{i\theta}\left( -\sin \theta +\cos \theta i \right)}{\left( \cos \theta +\sin \theta i \right) ^2}=0 \\ \Rightarrow f\left( \theta \right) =\mathrm{cons}\tan\mathrm{t} \\ f\left( \theta \right) =f\left( 0 \right) =\frac{e^{i0}}{\cos 0+\sin 0i}=1\Rightarrow \frac{e^{i\theta}}{\cos \theta +\sin \theta i}=1 \\ \Rightarrow e^{i\theta}=\cos \theta +\sin \theta i

f(θ)=cosθ+sinθieiθ​f′(θ)=(cosθ+sinθi)2ieiθ(cosθ+sinθi)−eiθ(−sinθ+cosθi)​=0⇒f(θ)=constantf(θ)=f(0)=cos0+sin0iei0​=1⇒cosθ+sinθieiθ​=1⇒eiθ=cosθ+sinθi

求解:

sin

x

=

2

\sin x=2

sinx=2 令:

sin

z

=

2

=

c

,

z

C

\sin z=2=c,z\in \mathbb{C}

sinz=2=c,z∈C

{

e

i

z

=

cos

z

+

sin

z

i

e

i

(

z

)

=

cos

z

sin

z

i

e

i

z

e

i

z

=

2

sin

z

i

\begin{cases} e^{iz}=\cos z+\sin zi\\ e^{i\left( -z \right)}=\cos z-\sin zi\\ \end{cases}\Rightarrow e^{iz}-e^{-iz}=2\sin zi

{eiz=cosz+sinziei(−z)=cosz−sinzi​⇒eiz−e−iz=2sinzi

sin

z

=

e

i

z

e

i

z

2

i

=

c

e

a

i

b

e

b

a

i

2

i

=

e

a

i

e

b

e

b

e

a

i

2

i

=

c

\therefore \sin z=\frac{e^{iz}-e^{-iz}}{2i}=c\Rightarrow \frac{e^{ai-b}-e^{b-ai}}{2i}=\frac{e^{ai}e^{-b}-e^be^{-ai}}{2i}=c

∴sinz=2ieiz−e−iz​=c⇒2ieai−b−eb−ai​=2ieaie−b−ebe−ai​=c 且有:

{

e

i

a

=

cos

a

+

sin

a

i

e

i

(

a

)

=

cos

a

sin

a

i

\begin{cases} e^{ia}=\cos a+\sin ai\\ e^{i\left( -a \right)}=\cos a-\sin ai\\ \end{cases}

{eia=cosa+sinaiei(−a)=cosa−sinai​

e

b

(

cos

a

+

sin

a

i

)

e

b

(

cos

a

sin

a

i

)

2

i

=

(

e

b

e

b

)

cos

a

(

e

b

+

e

b

)

sin

a

i

2

i

=

c

1

2

(

e

b

e

b

)

cos

a

i

+

1

2

(

e

b

+

e

b

)

sin

a

=

c

=

c

+

0

i

\Rightarrow \frac{e^{-b}\left( \cos a+\sin ai \right) -e^b\left( \cos a-\sin ai \right)}{2i}=\frac{\left( e^{-b}-e^b \right) \cos a-\left( e^{-b}+e^b \right) \sin ai}{2i}=c \\ \Rightarrow \frac{1}{2}\left( e^b-e^{-b} \right) \cos ai+\frac{1}{2}\left( e^{-b}+e^b \right) \sin a=c=c+0i

⇒2ie−b(cosa+sinai)−eb(cosa−sinai)​=2i(e−b−eb)cosa−(e−b+eb)sinai​=c⇒21​(eb−e−b)cosai+21​(e−b+eb)sina=c=c+0i

{

1

2

(

e

b

+

e

b

)

sin

a

=

c

1

2

(

e

b

e

b

)

cos

a

=

0

\Rightarrow \begin{cases} \frac{1}{2}\left( e^{-b}+e^b \right) \sin a=c\\ \frac{1}{2}\left( e^b-e^{-b} \right) \cos a=0\\ \end{cases}

⇒{21​(e−b+eb)sina=c21​(eb−e−b)cosa=0​

b

=

0

b=0

b=0 时,

sin

a

=

c

\sin a=c

sina=c 不成立(所设

a

,

b

R

a,b\in \mathbb{R}

a,b∈R)当

cos

a

=

0

\cos a=0

cosa=0 时,

1

2

(

e

b

+

e

b

)

=

±

c

1

+

e

2

b

±

2

c

e

b

=

0

\frac{1}{2}\left( e^{-b}+e^b \right) =\pm c\Rightarrow 1+e^{2b}\pm 2ce^b=0

21​(e−b+eb)=±c⇒1+e2b±2ceb=0 设

u

=

e

b

>

0

u=e^b>0

u=eb>0 ,则有:

u

=

±

c

±

c

2

1

u=\pm c\pm \sqrt{c^2-1}

u=±c±c2−1

b

=

ln

(

c

±

c

2

1

)

\therefore b=\ln \left( c\pm \sqrt{c^2-1} \right)

∴b=ln(c±c2−1

​)

z

=

π

2

+

2

k

π

+

ln

(

c

±

c

2

1

)

i

=

π

2

+

2

k

π

+

ln

(

2

±

3

)

i

\Rightarrow z=\frac{\pi}{2}+2k\pi +\ln \left( c\pm \sqrt{c^2-1} \right) i=\frac{\pi}{2}+2k\pi +\ln \left( 2\pm \sqrt{3} \right) i

⇒z=2π​+2kπ+ln(c±c2−1

​)i=2π​+2kπ+ln(2±3

​)i

文章链接

评论可见,请评论后查看内容,谢谢!!!评论后请刷新页面。