在DINO代码学习笔记(一)中已经将输入transformer之前的参数处理给捋了一遍,接下就是将这些参数传给transformer。

        DINO的transformer使用了Deformable-DETR中的可变性transformer(他们之前的工作也有用到)

        这里还是使用之前的一些设置,为了连贯,这里提前声明:

1、输入尺寸[2,3,640,701],

2、src为[[N,256,80,88],[N,256,40,44],[N,256,20,22],[N,256,10,11]],其中N=2,

3、poss为[[N,256,80,88],[N,256,40,44],[N,256,20,22],[N,256,10,11]]

4、mask为[[N,80,88],[N,40,44],[N,20,22],[N,10,11]] 

5、input_query_bbox [N,single_pad * 2 * dn_number,256](该batch中[N,200,256]);

6、input_query_label [N,200,4];

7、attn_mask [single_pad * 2 * dn_number + 900,single_pad * 2 * dn_number + 900](该batch中[1100,1100])

这里先把主函数的代码贴上来

class DeformableTransformer(nn.Module):

def __init__(self, d_model=256, nhead=8,

num_queries=300,

num_encoder_layers=6,

num_unicoder_layers=0,

num_decoder_layers=6,

dim_feedforward=2048, dropout=0.0,

activation="relu", normalize_before=False,

return_intermediate_dec=False, query_dim=4,

num_patterns=0,

modulate_hw_attn=False,

# for deformable encoder

deformable_encoder=False,

deformable_decoder=False,

num_feature_levels=1,

enc_n_points=4,

dec_n_points=4,

use_deformable_box_attn=False,

box_attn_type='roi_align',

# init query

learnable_tgt_init=False,

decoder_query_perturber=None,

add_channel_attention=False,

add_pos_value=False,

random_refpoints_xy=False,

# two stage

two_stage_type='no', # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']

two_stage_pat_embed=0,

two_stage_add_query_num=0,

two_stage_learn_wh=False,

two_stage_keep_all_tokens=False,

# evo of #anchors

dec_layer_number=None,

rm_enc_query_scale=True,

rm_dec_query_scale=True,

rm_self_attn_layers=None,

key_aware_type=None,

# layer share

layer_share_type=None,

# for detach

rm_detach=None,

decoder_sa_type='ca',

module_seq=['sa', 'ca', 'ffn'],

# for dn

embed_init_tgt=False,

use_detached_boxes_dec_out=False,

):

super().__init__()

self.num_feature_levels = num_feature_levels

self.num_encoder_layers = num_encoder_layers

self.num_unicoder_layers = num_unicoder_layers

self.num_decoder_layers = num_decoder_layers

self.deformable_encoder = deformable_encoder

self.deformable_decoder = deformable_decoder

self.two_stage_keep_all_tokens = two_stage_keep_all_tokens

self.num_queries = num_queries

self.random_refpoints_xy = random_refpoints_xy

self.use_detached_boxes_dec_out = use_detached_boxes_dec_out

assert query_dim == 4

if num_feature_levels > 1:

assert deformable_encoder, "only support deformable_encoder for num_feature_levels > 1"

if use_deformable_box_attn:

assert deformable_encoder or deformable_encoder

assert layer_share_type in [None, 'encoder', 'decoder', 'both']

if layer_share_type in ['encoder', 'both']:

enc_layer_share = True

else:

enc_layer_share = False

if layer_share_type in ['decoder', 'both']:

dec_layer_share = True

else:

dec_layer_share = False

assert layer_share_type is None

self.decoder_sa_type = decoder_sa_type

assert decoder_sa_type in ['sa', 'ca_label', 'ca_content']

# choose encoder layer type

if deformable_encoder:

encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,

dropout, activation,

num_feature_levels, nhead, enc_n_points, add_channel_attention=add_channel_attention, use_deformable_box_attn=use_deformable_box_attn, box_attn_type=box_attn_type)

else:

raise NotImplementedError

encoder_norm = nn.LayerNorm(d_model) if normalize_before else None

self.encoder = TransformerEncoder(

encoder_layer, num_encoder_layers,

encoder_norm, d_model=d_model,

num_queries=num_queries,

deformable_encoder=deformable_encoder,

enc_layer_share=enc_layer_share,

two_stage_type=two_stage_type

)

# choose decoder layer type

if deformable_decoder:

decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,

dropout, activation,

num_feature_levels, nhead, dec_n_points, use_deformable_box_attn=use_deformable_box_attn, box_attn_type=box_attn_type,

key_aware_type=key_aware_type,

decoder_sa_type=decoder_sa_type,

module_seq=module_seq)

else:

raise NotImplementedError

decoder_norm = nn.LayerNorm(d_model)

self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,

return_intermediate=return_intermediate_dec,

d_model=d_model, query_dim=query_dim,

modulate_hw_attn=modulate_hw_attn,

num_feature_levels=num_feature_levels,

deformable_decoder=deformable_decoder,

decoder_query_perturber=decoder_query_perturber,

dec_layer_number=dec_layer_number, rm_dec_query_scale=rm_dec_query_scale,

dec_layer_share=dec_layer_share,

use_detached_boxes_dec_out=use_detached_boxes_dec_out

)

self.d_model = d_model

self.nhead = nhead

self.dec_layers = num_decoder_layers

self.num_queries = num_queries # useful for single stage model only

self.num_patterns = num_patterns

if not isinstance(num_patterns, int):

Warning("num_patterns should be int but {}".format(type(num_patterns)))

self.num_patterns = 0

if num_feature_levels > 1:

if self.num_encoder_layers > 0:

self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))

else:

self.level_embed = None

self.learnable_tgt_init = learnable_tgt_init

assert learnable_tgt_init, "why not learnable_tgt_init"

self.embed_init_tgt = embed_init_tgt

if (two_stage_type != 'no' and embed_init_tgt) or (two_stage_type == 'no'):

self.tgt_embed = nn.Embedding(self.num_queries, d_model)

nn.init.normal_(self.tgt_embed.weight.data)

else:

self.tgt_embed = None

# for two stage

self.two_stage_type = two_stage_type

self.two_stage_pat_embed = two_stage_pat_embed

self.two_stage_add_query_num = two_stage_add_query_num

self.two_stage_learn_wh = two_stage_learn_wh

assert two_stage_type in ['no', 'standard'], "unknown param {} of two_stage_type".format(two_stage_type)

if two_stage_type =='standard':

# anchor selection at the output of encoder

self.enc_output = nn.Linear(d_model, d_model)

self.enc_output_norm = nn.LayerNorm(d_model)

if two_stage_pat_embed > 0:

self.pat_embed_for_2stage = nn.Parameter(torch.Tensor(two_stage_pat_embed, d_model))

nn.init.normal_(self.pat_embed_for_2stage)

if two_stage_add_query_num > 0:

self.tgt_embed = nn.Embedding(self.two_stage_add_query_num, d_model)

if two_stage_learn_wh:

self.two_stage_wh_embedding = nn.Embedding(1, 2)

else:

self.two_stage_wh_embedding = None

if two_stage_type == 'no':

self.init_ref_points(num_queries) # init self.refpoint_embed

self.enc_out_class_embed = None

self.enc_out_bbox_embed = None

# evolution of anchors

self.dec_layer_number = dec_layer_number

if dec_layer_number is not None:

if self.two_stage_type != 'no' or num_patterns == 0:

assert dec_layer_number[0] == num_queries, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries})"

else:

assert dec_layer_number[0] == num_queries * num_patterns, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries}) * num_patterns({num_patterns})"

self._reset_parameters()

self.rm_self_attn_layers = rm_self_attn_layers

if rm_self_attn_layers is not None:

print("Removing the self-attn in {} decoder layers".format(rm_self_attn_layers))

for lid, dec_layer in enumerate(self.decoder.layers):

if lid in rm_self_attn_layers:

dec_layer.rm_self_attn_modules()

self.rm_detach = rm_detach

if self.rm_detach:

assert isinstance(rm_detach, list)

assert any([i in ['enc_ref', 'enc_tgt', 'dec'] for i in rm_detach])

self.decoder.rm_detach = rm_detach

def _reset_parameters(self):

for p in self.parameters():

if p.dim() > 1:

nn.init.xavier_uniform_(p)

for m in self.modules():

if isinstance(m, MSDeformAttn):

m._reset_parameters()

if self.num_feature_levels > 1 and self.level_embed is not None:

nn.init.normal_(self.level_embed)

if self.two_stage_learn_wh:

nn.init.constant_(self.two_stage_wh_embedding.weight, math.log(0.05 / (1 - 0.05)))

def get_valid_ratio(self, mask):

_, H, W = mask.shape

valid_H = torch.sum(~mask[:, :, 0], 1) # 取feature map中非padding部分的H (即feature map的实际大小)

valid_W = torch.sum(~mask[:, 0, :], 1) # 取feature map中非padding部分的W

valid_ratio_h = valid_H.float() / H # 计算feature map中非padding部分的H在当前batch下feature map中的H所占的比例

valid_ratio_w = valid_W.float() / W # 计算feature map中非padding部分的W在当前batch下feature map中的W所占的比例

valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)

return valid_ratio

def init_ref_points(self, use_num_queries):

self.refpoint_embed = nn.Embedding(use_num_queries, 4)

if self.random_refpoints_xy:

self.refpoint_embed.weight.data[:, :2].uniform_(0,1)

self.refpoint_embed.weight.data[:, :2] = inverse_sigmoid(self.refpoint_embed.weight.data[:, :2])

self.refpoint_embed.weight.data[:, :2].requires_grad = False

def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None):

"""

Input:

- srcs: List of multi features [bs, ci, hi, wi]

- masks: List of multi masks [bs, hi, wi]

- refpoint_embed: [bs, num_dn, 4]. None in infer # 即input_query_bbox

- pos_embeds: List of multi pos embeds [bs, ci, hi, wi]

- tgt: [bs, num_dn, d_model]. None in infer # 即input_query_label

"""

# prepare input for encoder

src_flatten = []

mask_flatten = []

lvl_pos_embed_flatten = []

spatial_shapes = []

for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):

bs, c, h, w = src.shape

spatial_shape = (h, w)

spatial_shapes.append(spatial_shape)

src = src.flatten(2).transpose(1, 2) # bs, hw, c # 将H和W打平 [N,256,H,W] -> [N,H*W,256]

mask = mask.flatten(1) # bs, hw # [N,H,W] -> [N,H*W]

pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c # 同样将H和W打平 [N,256,H,W] -> [N,H*W,256]

if self.num_feature_levels > 1 and self.level_embed is not None: # self.level_embed是一个[4,256]的tensor

lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) # 加上层数的embed

else:

lvl_pos_embed = pos_embed

lvl_pos_embed_flatten.append(lvl_pos_embed)

src_flatten.append(src)

mask_flatten.append(mask)

src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c # 将打平后的tensor cat在一起,该batch中[N,9350,256]

mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw} 该batch中[N,9350]

lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c 该batch中[N,9350,256]

spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) # 存放着每一层feature map的[H,W],维度为[4,2]

level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) # cat在一起后feature map的起始索引,如:第一层是0,第二层是H1*W1+0,第三层是H2*W2+H1*W1+0,最后一层H3*W3+H2*W2+H1*W1+0 共4维 如level_start_index = tensor([ 0, 7040, 8800, 9240], device='cuda:0')

valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # 输出一个[N,4,2]的tensor,表示每一层的feature map中对应的非padding部分有效长宽与该层feature map长宽的比值

# two stage

enc_topk_proposals = enc_refpoint_embed = None

#########################################################

# Begin Encoder

#########################################################

memory, enc_intermediate_output, enc_intermediate_refpoints = self.encoder(

src_flatten,

pos=lvl_pos_embed_flatten,

level_start_index=level_start_index,

spatial_shapes=spatial_shapes,

valid_ratios=valid_ratios,

key_padding_mask=mask_flatten,

ref_token_index=enc_topk_proposals, # bs, nq

ref_token_coord=enc_refpoint_embed, # bs, nq, 4

) # memory [N,9350,256];enc_intermediate_output=Nonw;enc_intermediate_refpoints=None

#########################################################

# End Encoder

# - memory: bs, \sum{hw}, c

# - mask_flatten: bs, \sum{hw}

# - lvl_pos_embed_flatten: bs, \sum{hw}, c

# - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)

# - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)

#########################################################

if self.two_stage_type =='standard':

if self.two_stage_learn_wh:

input_hw = self.two_stage_wh_embedding.weight[0]

else:

input_hw = None

output_memory, output_proposals = gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes, input_hw)

output_memory = self.enc_output_norm(self.enc_output(output_memory)) # Linear(256,256) + Layer Norm

if self.two_stage_pat_embed > 0:

bs, nhw, _ = output_memory.shape

# output_memory: bs, n, 256; self.pat_embed_for_2stage: k, 256

output_memory = output_memory.repeat(1, self.two_stage_pat_embed, 1)

_pats = self.pat_embed_for_2stage.repeat_interleave(nhw, 0)

output_memory = output_memory + _pats

output_proposals = output_proposals.repeat(1, self.two_stage_pat_embed, 1)

if self.two_stage_add_query_num > 0:

assert refpoint_embed is not None

output_memory = torch.cat((output_memory, tgt), dim=1)

output_proposals = torch.cat((output_proposals, refpoint_embed), dim=1)

enc_outputs_class_unselected = self.enc_out_class_embed(output_memory) # Linear(256,91) [N,9350,91]

enc_outputs_coord_unselected = self.enc_out_bbox_embed(output_memory) + output_proposals # (bs, \sum{hw}, 4) unsigmoid [N,9350,4]

topk = self.num_queries # 900

topk_proposals = torch.topk(enc_outputs_class_unselected.max(-1)[0], topk, dim=1)[1] # bs, nq top900索引[N,900]

# gather boxes

refpoint_embed_undetach = torch.gather(enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) # unsigmoid 横向根据topk_proposals取值 [N,900,4]

refpoint_embed_ = refpoint_embed_undetach.detach() # refpoint_embed_ [N,900,4]

init_box_proposal = torch.gather(output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)).sigmoid() # sigmoid init_box_proposal [N,900,4]

# gather tgt

tgt_undetach = torch.gather(output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model))

if self.embed_init_tgt:

tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model [N,900,256]

else:

tgt_ = tgt_undetach.detach()

if refpoint_embed is not None:

refpoint_embed=torch.cat([refpoint_embed,refpoint_embed_],dim=1) # [N,1100,4]

tgt=torch.cat([tgt,tgt_],dim=1) # [N,1100,256]

else:

refpoint_embed,tgt=refpoint_embed_,tgt_

elif self.two_stage_type == 'no':

tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model

refpoint_embed_ = self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, 4

if refpoint_embed is not None:

refpoint_embed=torch.cat([refpoint_embed,refpoint_embed_],dim=1)

tgt=torch.cat([tgt,tgt_],dim=1)

else:

refpoint_embed,tgt=refpoint_embed_,tgt_

if self.num_patterns > 0:

tgt_embed = tgt.repeat(1, self.num_patterns, 1)

refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)

tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(self.num_queries, 1) # 1, n_q*n_pat, d_model

tgt = tgt_embed + tgt_pat

init_box_proposal = refpoint_embed_.sigmoid()

else:

raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type))

#########################################################

# End preparing tgt

# - tgt: bs, NQ, d_model

# - refpoint_embed(unsigmoid): bs, NQ, d_model

#########################################################

#########################################################

# Begin Decoder

#########################################################

hs, references = self.decoder(

tgt=tgt.transpose(0, 1), # [1100,N,256]

memory=memory.transpose(0, 1), # [9350,N,256]

memory_key_padding_mask=mask_flatten, # [N,9350]

pos=lvl_pos_embed_flatten.transpose(0, 1), # [9350,N,256]

refpoints_unsigmoid=refpoint_embed.transpose(0, 1), # [1100,N,4]

level_start_index=level_start_index, # [4]

spatial_shapes=spatial_shapes, # [4,2]

valid_ratios=valid_ratios,tgt_mask=attn_mask) # valid_ratios [2,4,2],attn_mask [1100,1100]

#########################################################

# End Decoder

# hs: n_dec, bs, nq, d_model [N,1100,256] * 6

# references: n_dec+1, bs, nq, query_dim [N,1100,4] * 7

#########################################################

#########################################################

# Begin postprocess

#########################################################

if self.two_stage_type == 'standard':

if self.two_stage_keep_all_tokens:

hs_enc = output_memory.unsqueeze(0)

ref_enc = enc_outputs_coord_unselected.unsqueeze(0)

init_box_proposal = output_proposals

else:

hs_enc = tgt_undetach.unsqueeze(0) # [1,N,900,256]

ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0) # [1,N,900,4]

else:

hs_enc = ref_enc = None

#########################################################

# End postprocess

# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None

# ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None

#########################################################

return hs, references, hs_enc, ref_enc, init_box_proposal

# hs: (n_dec, bs, nq, d_model)

# references: sigmoid coordinates. (n_dec+1, bs, bq, 4)

# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None

# ref_enc: sigmoid coordinates. \

# (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None

从主函数可以看到,在输入encoder之前还需要对参数做一些预处理

# prepare input for encoder

src_flatten = []

mask_flatten = []

lvl_pos_embed_flatten = []

spatial_shapes = []

for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):

bs, c, h, w = src.shape

spatial_shape = (h, w)

spatial_shapes.append(spatial_shape)

src = src.flatten(2).transpose(1, 2) # bs, hw, c # 将H和W打平 [N,256,H,W] -> [N,H*W,256]

mask = mask.flatten(1) # bs, hw # [N,H,W] -> [N,H*W]

pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c # 同样将H和W打平 [N,256,H,W] -> [N,H*W,256]

if self.num_feature_levels > 1 and self.level_embed is not None: # self.level_embed是一个[4,256]的tensor

lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) # 加上层数的embed

else:

lvl_pos_embed = pos_embed

lvl_pos_embed_flatten.append(lvl_pos_embed)

src_flatten.append(src)

mask_flatten.append(mask)

src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c # 将打平后的tensor cat在一起,该batch中[N,9350,256]

mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw} 该batch中[N,9350]

lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c 该batch中[N,9350,256]

# 存放着每一层feature map的[H,W],维度为[4,2]

spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)

# cat在一起后feature map的起始索引,如:第一层是0,第二层是H1*W1+0,第三层是H2*W2+H1*W1+0,最后一层H3*W3+H2*W2+H1*W1+0 共4维 如level_start_index = tensor([ 0, 7040, 8800, 9240], device='cuda:0')

level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))

# 输出一个[N,4,2]的tensor,表示每一层的feature map中对应的非padding部分有效长宽与该层feature map长宽的比值

valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)

1、把四层feature map整合成query,假设C2的尺寸为[H,W],那么它的维度为len_q = H*W + H//2*W//2 + H//4*W//4 + H//8*W//8,最终的维度为[N,len_q,256],其中N为batch size,过程中还会加入层数embed,这里为[N,9350,256],对应的位置编码的维度也是一样的

2、mask的维度对齐query,为[N,len_q]([N,9350])

3、spatial_shapes记录了四层feature map的尺寸[4,2]([[80, 88],[40, 44],[20, 22],[10, 11]])

4、level_start_index记录cat在一起后feature map的起始索引,如:第一层是0,第二层是H1*W1+0,第三层是H2*W2+H1*W1+0,最后一层H3*W3+H2*W2+H1*W1+0 共4维

5、valid_ratios输出一个[N,4,2]的tensor,表示每一层的feature map中对应的非padding部分(实际有效feature map)的有效长宽与该层feature map长宽的比值

一、encoder 

#########################################################

# Begin Encoder

#########################################################

memory, enc_intermediate_output, enc_intermediate_refpoints = self.encoder(

src_flatten,

pos=lvl_pos_embed_flatten,

level_start_index=level_start_index,

spatial_shapes=spatial_shapes,

valid_ratios=valid_ratios,

key_padding_mask=mask_flatten,

ref_token_index=enc_topk_proposals, # bs, nq

ref_token_coord=enc_refpoint_embed, # bs, nq, 4

) # memory [N,9350,256];enc_intermediate_output=Nonw;enc_intermediate_refpoints=None

#########################################################

# End Encoder

# - memory: bs, \sum{hw}, c

# - mask_flatten: bs, \sum{hw}

# - lvl_pos_embed_flatten: bs, \sum{hw}, c

# - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)

# - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)

#########################################################

class TransformerEncoder(nn.Module):

def __init__(self,

encoder_layer, num_layers, norm=None, d_model=256,

num_queries=300,

deformable_encoder=False,

enc_layer_share=False, enc_layer_dropout_prob=None,

two_stage_type='no', # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']

):

super().__init__()

# prepare layers

if num_layers > 0:

self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share)

else:

self.layers = []

del encoder_layer

self.query_scale = None

self.num_queries = num_queries

self.deformable_encoder = deformable_encoder

self.num_layers = num_layers

self.norm = norm

self.d_model = d_model

self.enc_layer_dropout_prob = enc_layer_dropout_prob

if enc_layer_dropout_prob is not None:

assert isinstance(enc_layer_dropout_prob, list)

assert len(enc_layer_dropout_prob) == num_layers

for i in enc_layer_dropout_prob:

assert 0.0 <= i <= 1.0

self.two_stage_type = two_stage_type

if two_stage_type in ['enceachlayer', 'enclayer1']:

_proj_layer = nn.Linear(d_model, d_model)

_norm_layer = nn.LayerNorm(d_model)

if two_stage_type == 'enclayer1':

self.enc_norm = nn.ModuleList([_norm_layer])

self.enc_proj = nn.ModuleList([_proj_layer])

else:

self.enc_norm = nn.ModuleList([copy.deepcopy(_norm_layer) for i in range(num_layers - 1) ])

self.enc_proj = nn.ModuleList([copy.deepcopy(_proj_layer) for i in range(num_layers - 1) ])

@staticmethod

def get_reference_points(spatial_shapes, valid_ratios, device):

reference_points_list = []

for lvl, (H_, W_) in enumerate(spatial_shapes): # 遍历feature map,第0层是尺寸最大的feature map H_=80,W_=88

# 根据feature map的尺寸生成网格,生成每个像素点的中心点归一化后的x,y坐标

ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),

torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))

ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)

ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)

ref = torch.stack((ref_x, ref_y), -1) # [N,7040,2]

reference_points_list.append(ref)

reference_points = torch.cat(reference_points_list, 1) # 再将所有的归一化后的中心点坐标cat在一起 [N,9350,2]

reference_points = reference_points[:, :, None] * valid_ratios[:, None] # 归一化的x,y坐标乘实际feature map有效区域的比值,得到每个中心点在实际feature map上归一化的坐标 [N,9350,4,2]

return reference_points

def forward(self,

src: Tensor,

pos: Tensor,

spatial_shapes: Tensor,

level_start_index: Tensor,

valid_ratios: Tensor,

key_padding_mask: Tensor,

ref_token_index: Optional[Tensor]=None,

ref_token_coord: Optional[Tensor]=None

):

"""

Input:

- src: [bs, sum(hi*wi), 256]

- pos: pos embed for src. [bs, sum(hi*wi), 256]

- spatial_shapes: h,w of each level [num_level, 2]

- level_start_index: [num_level] start point of level in sum(hi*wi).

- valid_ratios: [bs, num_level, 2]

- key_padding_mask: [bs, sum(hi*wi)]

- ref_token_index: bs, nq

- ref_token_coord: bs, nq, 4

Intermedia:

- reference_points: [bs, sum(hi*wi), num_level, 2]

Outpus:

- output: [bs, sum(hi*wi), 256]

"""

if self.two_stage_type in ['no', 'standard', 'enceachlayer', 'enclayer1']:

assert ref_token_index is None

output = src

# preparation and reshape

if self.num_layers > 0:

if self.deformable_encoder:

reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device) # [N,9350,4,2]

intermediate_output = []

intermediate_ref = []

if ref_token_index is not None:

out_i = torch.gather(output, 1, ref_token_index.unsqueeze(-1).repeat(1, 1, self.d_model))

intermediate_output.append(out_i)

intermediate_ref.append(ref_token_coord)

# main process

for layer_id, layer in enumerate(self.layers):

# main process

dropflag = False

if self.enc_layer_dropout_prob is not None:

prob = random.random()

if prob < self.enc_layer_dropout_prob[layer_id]:

dropflag = True

if not dropflag:

if self.deformable_encoder:

output = layer(src=output, pos=pos, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, key_padding_mask=key_padding_mask)

else:

output = layer(src=output.transpose(0, 1), pos=pos.transpose(0, 1), key_padding_mask=key_padding_mask).transpose(0, 1)

if ((layer_id == 0 and self.two_stage_type in ['enceachlayer', 'enclayer1']) \

or (self.two_stage_type == 'enceachlayer')) \

and (layer_id != self.num_layers - 1):

output_memory, output_proposals = gen_encoder_output_proposals(output, key_padding_mask, spatial_shapes)

output_memory = self.enc_norm[layer_id](self.enc_proj[layer_id](output_memory))

# gather boxes

topk = self.num_queries

enc_outputs_class = self.class_embed[layer_id](output_memory)

ref_token_index = torch.topk(enc_outputs_class.max(-1)[0], topk, dim=1)[1] # bs, nq

ref_token_coord = torch.gather(output_proposals, 1, ref_token_index.unsqueeze(-1).repeat(1, 1, 4))

output = output_memory

# aux loss

if (layer_id != self.num_layers - 1) and ref_token_index is not None:

out_i = torch.gather(output, 1, ref_token_index.unsqueeze(-1).repeat(1, 1, self.d_model))

intermediate_output.append(out_i)

intermediate_ref.append(ref_token_coord)

if self.norm is not None:

output = self.norm(output)

if ref_token_index is not None:

intermediate_output = torch.stack(intermediate_output) # n_enc/n_enc-1, bs, \sum{hw}, d_model

intermediate_ref = torch.stack(intermediate_ref)

else:

intermediate_output = intermediate_ref = None

return output, intermediate_output, intermediate_ref

        其中reference_points的shape为[N,len_q,4,2]([N,9350,4,2]),得到的是在每一层特征图中的相对位置。

class DeformableTransformerEncoderLayer(nn.Module):

def __init__(self,

d_model=256, d_ffn=1024,

dropout=0.1, activation="relu",

n_levels=4, n_heads=8, n_points=4,

add_channel_attention=False,

use_deformable_box_attn=False,

box_attn_type='roi_align',

):

super().__init__()

# self attention

if use_deformable_box_attn:

self.self_attn = MSDeformableBoxAttention(d_model, n_levels, n_heads, n_boxes=n_points, used_func=box_attn_type)

else:

self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)

self.dropout1 = nn.Dropout(dropout)

self.norm1 = nn.LayerNorm(d_model)

# ffn

self.linear1 = nn.Linear(d_model, d_ffn)

self.activation = _get_activation_fn(activation, d_model=d_ffn)

self.dropout2 = nn.Dropout(dropout)

self.linear2 = nn.Linear(d_ffn, d_model)

self.dropout3 = nn.Dropout(dropout)

self.norm2 = nn.LayerNorm(d_model)

# channel attention

self.add_channel_attention = add_channel_attention

if add_channel_attention:

self.activ_channel = _get_activation_fn('dyrelu', d_model=d_model)

self.norm_channel = nn.LayerNorm(d_model)

@staticmethod

def with_pos_embed(tensor, pos):

return tensor if pos is None else tensor + pos

def forward_ffn(self, src):

src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))

src = src + self.dropout3(src2)

src = self.norm2(src)

return src

def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None):

# self attention

src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, key_padding_mask)

src = src + self.dropout1(src2)

src = self.norm1(src)

# ffn

src = self.forward_ffn(src)

# channel attn

if self.add_channel_attention:

src = self.norm_channel(src + self.activ_channel(src))

return src

encoder的图解: 

 MSDeformAttn:

class MSDeformAttn(nn.Module):

def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):

"""

Multi-Scale Deformable Attention Module

:param d_model hidden dimension

:param n_levels number of feature levels

:param n_heads number of attention heads

:param n_points number of sampling points per attention head per feature level

"""

super().__init__()

if d_model % n_heads != 0:

raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads))

_d_per_head = d_model // n_heads

# you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation

if not _is_power_of_2(_d_per_head):

warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 "

"which is more efficient in our CUDA implementation.")

self.im2col_step = 64

self.d_model = d_model

self.n_levels = n_levels

self.n_heads = n_heads

self.n_points = n_points

self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)

self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)

self.value_proj = nn.Linear(d_model, d_model)

self.output_proj = nn.Linear(d_model, d_model)

self._reset_parameters()

def _reset_parameters(self):

constant_(self.sampling_offsets.weight.data, 0.)

thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)

grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)

grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1)

for i in range(self.n_points):

grid_init[:, :, i, :] *= i + 1

with torch.no_grad():

self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))

constant_(self.attention_weights.weight.data, 0.)

constant_(self.attention_weights.bias.data, 0.)

xavier_uniform_(self.value_proj.weight.data)

constant_(self.value_proj.bias.data, 0.)

xavier_uniform_(self.output_proj.weight.data)

constant_(self.output_proj.bias.data, 0.)

def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None):

"""

:param query (N, Length_{query}, C)

:param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area

or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes

:param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C)

:param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]

:param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}]

:param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements

:return output (N, Length_{query}, C)

"""

N, Len_q, _ = query.shape # Len_q9350/1100

N, Len_in, _ = input_flatten.shape # Len_in9350

assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in

value = self.value_proj(input_flatten) # 输入经过一个Linear层,维度由[N,Len_in,256] -> [N,Len_in,256],得到value

if input_padding_mask is not None:

value = value.masked_fill(input_padding_mask[..., None], float(0)) # 在value中,mask中对应元素为True的位置都用0填充

value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads) # value的shape由[N,Len_in,256] -> [N,Len_in,8,32]

sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2) # 每个query产生对应不同head不同level的偏置,sampling_offsets的shape由[N,Len_q,256] -> [N,Len_q,8,4,4,2]

attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points) # 每个偏置向量的权重,经过Linear(256,128),attention_weights的shape由[N,Len_q,256] -> [N,Len_q,8,16]

attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points) # 对属于同一个query的来自与不同level的offset后向量权重在每个head分别归一化,softmax后attention_weights的shape由[N,Len_q,8,16] -> [N,Len_q,8,4,4]

# N, Len_q, n_heads, n_levels, n_points, 2

if reference_points.shape[-1] == 2:

offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1) # offset_normalizer 将input_spatial_shapes中[H,W]的形式转化为[W,H],input_spatial_shapes的shape还是[4,2]

sampling_locations = reference_points[:, :, None, :, None, :] \

+ sampling_offsets / offset_normalizer[None, None, None, :, None, :] # 采样点的坐标[N,Len_q,8,4,4,2]

elif reference_points.shape[-1] == 4:

sampling_locations = reference_points[:, :, None, :, None, :2] \

+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5

else:

raise ValueError(

'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1]))

# for amp

if value.dtype == torch.float16:

# for mixed precision

output = MSDeformAttnFunction.apply(

value.to(torch.float32), input_spatial_shapes, input_level_start_index, sampling_locations.to(torch.float32), attention_weights, self.im2col_step)

output = output.to(torch.float16)

output = self.output_proj(output)

return output

output = MSDeformAttnFunction.apply(

value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step)

output = self.output_proj(output) # 输出经过一个Linear层,维度由[N,Len_q,256] -> [N,Len_q,256]

return output

        源码中n_head设置为8,d_model为256,n_levels为4,n_points为4。

        MSDeformAttn函数就是将加了pos_embeds的srcs作为query传入,每一个query在特征图上对应一个reference_point,基于每个reference_point再选取n = 4个keys,根据Linear生成的attention_weights进行特征融合(注意力权重不是Q * k算来的,而是对query直接Linear得到的)。sampling_offsets,attention_weights的具体信息在上面的代码段中有标注,这里就不多说了。

deformable transformer的图解(来自Deformable-DETR):

 对应的公式:

MSDeformAttnFunction调用的是cuda编程,不过代码里头有一个pytorch的实现:

def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights):

# for debug and test only,

# need to use cuda version instead

N_, S_, M_, D_ = value.shape # value shpae [N,len_q,8,32]

_, Lq_, M_, L_, P_, _ = sampling_locations.shape # shape [N,len_q,8,4,4,2]

value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) # 区分每个feature map level

sampling_grids = 2 * sampling_locations - 1

sampling_value_list = []

for lid_, (H_, W_) in enumerate(value_spatial_shapes):

# N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_

value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_) # [N,H_*W_,8,32] -> [N*8,32,H_,W_]

# N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2

sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1)

# N_*M_, D_, Lq_, P_

# F.grid_sample这个函数的作用就是给定输入input和网格grid,根据grid中的像素位置从input中取出对应位置的值(可能需要插值)得到输出output。

sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_,

mode='bilinear', padding_mode='zeros', align_corners=False)

sampling_value_list.append(sampling_value_l_)

# (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_)

attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_) # shape [N,len_q,8,4,4] -> [N*8,1,len_q,16]

output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_) # 对应上论文中的公式

return output.transpose(1, 2).contiguous()

encoder输出:

1、memory[N,9350,256];

2、enc_intermediate_output=None;

3、enc_intermediate_refpoints=None;

到这里先将encoder的部分捋一遍,后续更新decoder和loss部分

查看原文