KVM Kernel-based Virtual Machine Internals, code and more http://slides.com/braoru/kvm#/ What behind KVM QEMU and KVM architecture overview KVM internals Very small Introduction to Libvirt KVM in 5 secondes Introduced to make VT-x/AMD-V available to user space Exposes virtualization features securely through a single interface /dev/kvm vailable since 2.6.20 (2006) Clean and efficient dev From first LKML posting to merge: 3 months 100% orthogonal to core kernel KVM is not KVM First of all there is QEMU then KVM then Libvirt then the whole ecosystems.. At the begining, Qemu Running a guest involves executing guest code  Handling timers Processing I/O Responding to monitor commands.  Doing all these things at once without pausing guest execution Deal with events Deal with events There are two popular architectures for programs that need to respond to events from multiple sources DEAL WITH EVENTS Parallel architecture Splits work into processes or threads that can execute simultaneously. DEAL WITH EVENTS Event-driven architecture Event-driven architecture reacts to events by running a main loop that dispatches to event handlers.  This is commonly implemented using the select(2) or poll(2) family of system calls to wait on multiple file descriptors. Threading and event driven model of qemu Qemu uses an hybrid architecture Qemu the event_loop Event-driven architecture is centered around the event loop which dispatches events to handler functions. QEMU's main event loop is main_loop_wait() Waits for file descriptors to become readable or writable. File descriptors are a critical  because files, sockets, pipes, and various other resources are all file descriptors. Runs expired timers.  Runs bottom-halves (BHs), which  used to avoid reentrancy and overflowing the call stack. main-loop.c QEMU THE EVENT_LOOP A file descriptor becomes ready, a timer expires, or a BH is scheduled, the event loop invokes a callback No other core code is executing at the same time so synchronization is not necessary Execute sequentially and atomically Only 1 thread of control needed at any given time No blocking system calls or long-running computations should be performed. Avoid spending an unbounded amount of time in a callback If you not follow those advices this will force the guest to pause and the monitor to become unresponsive. QEMU threads To help the event_loop Offload what need to be offloaded QEMU THREADS TO HELP THE EVENT_LOOP There are system calls which have no non-blocking equivalent.  Sometimes long-running computations flood the CPU and can't be easily break up into callbacks. In these cases dedicated worker threads can be used to carefully move these tasks out of core QEMU. One example of worker threads is vnc-jobs.c When a worker thread needs to notify core QEMU, a pipe or a qemu_eventfd() file descriptor is added to the event loop. executing guest code Here are two mechanism for executing guest code: Tiny Code Generator (TCG) and KVM Executing guest code in qemu is very simple, it use thread.  Exactly 1 thread by vcpu. summary about qemu processing 1 process per guest 1 thread for the main event_loop() 1 thread by vcpu As many (reasonably) threads as needed for offloaded tasks All the existing Linux strengths at our disposal Memory as Huge page, KSM, IO, Scheduler, Energy, Device hotplug, networking, Security, All the Linux software world, ... qemu guest memory Guest ram is allocated at qemu start up This mapped memory is "really" allocated by the process (with malloc()) qemu_madvise() Tips : use -mem-path to give qemu a memory image to load (can be very very good in #infosec) reminder why x86 virt is a pain... No hardware provisions Instruction behave differently depending on privilege context Architecture not built for trap and emulate CISC is ... CISC A complete theorical virtualisation courses : CS 686: Special Topic: Intel EM64T and VT Extensions (Spring 2007) reminder how intel vt-x help Guest SW <-> VMM  Transitions  Virtual-machine control structure KVM virtualisation KVM is a virtualization feature in the Linux kernel that lets you safely execute guest code directly on the host CPU open /dev/kvm use iocrl KVM_RUN (KVM IOCTL doc) As simple as :open("/dev/kvm")

ioctl(KVM_CREATE_VM)

ioctl(KVM_CREATE_VCPU)

for (;;) {

ioctl(KVM_RUN)

switch (exit_reason) {

case KVM_EXIT_IO: /* ... */

case KVM_EXIT_HLT: /* ... */

}

}

kvm virtualisation

It's DEMO time

What do you need : 

A bit of C ...

A touch of ASM

Makefile

gcc

EMU / KVM / CPU / TIME interactions

Light vs Heavy exit

QEMU / KVM / CPU / TIME interactions

causes of VM Exits

VM Entry : 

Transition from VMM to Guest  Enters VMX non-root operation

Loads Guest state and Exit criteria from VMCS

VMLAUNCH instruction used on initial entry

VMRESUME instruction used on subsequent entries

VM Exit : 

VMEXIT instruction used on transition from Guest to VMM

Enters VMX root operation

Saves Guest state in VMCS

Loads VMM state from VMCS

start a kvm vm in reality

A bit more complicated than before :

KVM CREATE VM : The new VM has no virtual cpus and no memory

KVM SET USER MEMORY REGION : MAP userspace memory for the VM

KVM CREATE IRQCHIP / ...PIT KVM CREATE VCPU : Create hardware component and map them with VT-X functionnalities

KVM SET REGS / ...SREGS / ...FPU / ... KVM SET CPUID / ...MSRS / ...VCPU EVENTS / ... KVM SET LAPIC : hardware configurations

KVM RUN : Start the VM

start a vm in qemu-kvm/usr/bin/qemu-kvm -S -M pc-0.13 -enable-kvm -m 512 -smp 2,sockets=2,cores=1,threads=1

-name test -uuid e9b4c7be-d60a-c16e-92c3-166421b4daca -nodefconfig -nodefaults

-chardev socket,id=monitor,path=/var/lib/libvirt/qemu/test.monitor,server,nowait

-mon chardev=monitor,mode=readline -rtc base=utc -boot c

-drive file=/var/lib/libvirt/images/test.img,if=none,id=drive-virtio-disk0,boot=on,format=raw

-device virtio-blk-pci,bus=pci.0,addr=0x5,drive=drive-virtio-disk0,id=virtio-disk0

-drive if=none,media=cdrom,id=drive-ide0-1-0,readonly=on,format=raw

-device ide-drive,bus=ide.1,unit=0,drive=drive-ide0-1-0,id=ide0-1-0

-device virtio-net-pci,vlan=0,id=net0,mac=52:54:00:cc:1c:10,bus=pci.0,addr=0x3

-net tap,fd=59,vlan=0,name=hostnet0 -chardev pty,id=serial0 -device isa-serial,chardev=serial0

-usb -device usb-tablet,id=input0 -vnc 127.0.0.1:0 -vga cirrus -device AC97,id=sound0,bus=pci.0,addr=0x4

-device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x6

Now you really know why tools are great

KVM processing

What about passthroug, paravirt and virtio

Reduce VM exits or make them lightweight

Improve I/O throughput & latency (less emulation)

Compensates virtualization effects

Enable direct host-guest interaction

VIRTIO device

Network

Block

Serial I/O (console, host-guest channel, ...)

Memory balloon

File system (9P)

SCSI

Based on generic RX/TX buffer

Logic distributed in the guest driver (aka virtual device) and qemu backend (and kernel backend in some cases)

Virtio device

vhost example

High throughput

Low latency guest networking

Normally the QEMU userspace process emulates I/O accesses from the guest.  Vhost puts virtio emulation code into the kernel

Dont forget vhost-blk and vhost-scsi

Virtio

vhost example

vhost-net driver creates a /dev/vhost-net character device on the host

QEMU is launched with -netdev tap,vhost=on and open /dev/vhost-net

vhost driver creates a kernel thread called vhost-$pid

$pid = pidof(QEMU)

Job of the worker thread is to handle I/O events and perform the device emulation.

vhost architecture is not directly linked to KVM

Use ioeventfd and irqfd

Virtio device

Virtio device

vhost

Kernel code : 

drivers/vhost/vhost.c - common vhost driver code

drivers/vhost/net.c - vhost-net driver

virt/kvm/eventfd.c - ioeventfd and irqfd

The QEMU userspace code shows how to initialize the vhost instance :

hw/vhost.c - common vhost initialization code

hw/vhost_net.c - vhost-net initialization

LIBVIRT

very small introduction

Virtualization library: manage guest on one or many nodes

Share the application stack between hypervisors

Long term stability and compatibility of API and ABI

Provide security and remote access “out of the box”

Expand to management APIs (Node, Storage, Network)

livirt

Very small introduction

查看原文