目录

前言导入所需包基本参数配置导入数据集定义生成器与判别器初始化生成器和判别器定义损失函数开始训练绘制损失曲线真假对比

前言

本项目使用 DCGAN 模型,在自建数据集上进行实验。

本项目使用的数据集是人脸嘴巴区域——微笑表情的数据集

数据集文件夹结构如下,图片供 4357 张

├─mouth

│ └─smile

├─1smile.jpg

├─2smile.jpg

├─3smile.jpg

└─....

同时,创建一个 out 文件夹来保存训练的中间结果,主要就是看 DCGAN 是如何从一张噪声照片生成我们期待的图片

import os

import time

if os.path.exists("out"):

print("移除现有 out 文件夹!")

os.system("rm -r ./out")

time.sleep(1)

print("创建 out 文件夹!")

os.mkdir("./out")

移除现有 out 文件夹! 创建 out 文件夹! 下方链接为该数据集压缩包,需要者自取:https://dsw2-dsw-d20220730172851067d108824bc001390623-8888.pcs-gw-cn-shanghai.aliyun.com/files/download/mouth.zip?_xsrf=2%7C85e1dbf2%7C83ca44adc674ecd3a0dd4cea51828807%7C165917333

运行下面代码,对数据集进行解压。 由于图片数量多,解压需要一定时间

!unzip mouth.zip -d ./mouth

print("解压完毕!")

导入所需包

from __future__ import print_function

#%matplotlib inline

import argparse

import os

import random

import torch

import torch.nn as nn

import torch.nn.parallel

import torch.backends.cudnn as cudnn

import torch.optim as optim

import torch.utils.data

import torchvision.datasets as dset

import torchvision.transforms as transforms

import torchvision.utils as vutils

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

from IPython.display import HTML

os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

基本参数配置

# 设置一个随机种子,方便进行可重复性实验

manualSeed = 999

print("Random Seed: ", manualSeed)

random.seed(manualSeed)

torch.manual_seed(manualSeed)

# 数据集所在路径

dataroot = "mouth/"

# 数据加载的进程数

workers = 0

# Batch size 大小

batch_size = 64

# Spatial size of training images. All images will be resized to this

# size using a transformer.

# 图片大小

image_size = 64

# 图片的通道数

nc = 3

# Size of z latent vector (i.e. size of generator input)

nz = 100

# Size of feature maps in generator

ngf = 64

# Size of feature maps in discriminator

ndf = 64

# Number of training epochs

num_epochs = 10

# Learning rate for optimizers

lr = 0.0003

# Beta1 hyperparam for Adam optimizers

beta1 = 0.5

# Number of GPUs available. Use 0 for CPU mode.

ngpu = 1

# Decide which device we want to run on

device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")

导入数据集

# We can use an image folder dataset the way we have it setup.

# Create the dataset

dataset = dset.ImageFolder(root=dataroot,

transform=transforms.Compose([

transforms.Resize(image_size),

transforms.CenterCrop(image_size),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),

]))

# Create the dataloader

dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,

shuffle=True, num_workers=workers)

简单看一下我们的原始数据集长啥样

# Plot some training images

real_batch = next(iter(dataloader))

plt.figure(figsize=(8,8))

plt.axis("off")

plt.title("Training Images")

plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=2, normalize=True).cpu(),(1,2,0)))

# plt.show()

定义生成器与判别器

# 权重初始化函数,为生成器和判别器模型初始化

def weights_init(m):

classname = m.__class__.__name__

if classname.find('Conv') != -1:

nn.init.normal_(m.weight.data, 0.0, 0.02)

elif classname.find('BatchNorm') != -1:

nn.init.normal_(m.weight.data, 1.0, 0.02)

nn.init.constant_(m.bias.data, 0)

# Generator Code

class Generator(nn.Module):

def __init__(self, ngpu):

super(Generator, self).__init__()

self.ngpu = ngpu

self.main = nn.Sequential(

# input is Z, going into a convolution

nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),

nn.BatchNorm2d(ngf * 8),

nn.ReLU(True),

# state size. (ngf*8) x 4 x 4

nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),

nn.BatchNorm2d(ngf * 4),

nn.ReLU(True),

# state size. (ngf*4) x 8 x 8

nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),

nn.BatchNorm2d(ngf * 2),

nn.ReLU(True),

# state size. (ngf*2) x 16 x 16

nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),

nn.BatchNorm2d(ngf),

nn.ReLU(True),

# state size. (ngf) x 32 x 32

nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),

nn.Tanh()

# state size. (nc) x 64 x 64

)

def forward(self, input):

return self.main(input)

class Discriminator(nn.Module):

def __init__(self, ngpu):

super(Discriminator, self).__init__()

self.ngpu = ngpu

self.main = nn.Sequential(

# input is (nc) x 64 x 64

nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),

nn.LeakyReLU(0.2, inplace=True),

# state size. (ndf) x 32 x 32

nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),

nn.BatchNorm2d(ndf * 2),

nn.LeakyReLU(0.2, inplace=True),

# state size. (ndf*2) x 16 x 16

nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),

nn.BatchNorm2d(ndf * 4),

nn.LeakyReLU(0.2, inplace=True),

# state size. (ndf*4) x 8 x 8

nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),

nn.BatchNorm2d(ndf * 8),

nn.LeakyReLU(0.2, inplace=True),

# state size. (ndf*8) x 4 x 4

nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),

nn.Sigmoid()

)

def forward(self, input):

return self.main(input)

初始化生成器和判别器

# Create the generator

netG = Generator(ngpu).to(device)

# Handle multi-gpu if desired

if (device.type == 'cuda') and (ngpu > 1):

netG = nn.DataParallel(netG, list(range(ngpu)))

# Apply the weights_init function to randomly initialize all weights

# to mean=0, stdev=0.2.

netG.apply(weights_init)

# Print the model

print(netG)

# Create the Discriminator

netD = Discriminator(ngpu).to(device)

# Handle multi-gpu if desired

if (device.type == 'cuda') and (ngpu > 1):

netD = nn.DataParallel(netD, list(range(ngpu)))

# Apply the weights_init function to randomly initialize all weights

# to mean=0, stdev=0.2.

netD.apply(weights_init)

# Print the model

print(netD)

定义损失函数

# Initialize BCELoss function

criterion = nn.BCELoss()

开始训练

# Create batch of latent vectors that we will use to visualize

# the progression of the generator

fixed_noise = torch.randn(64, nz, 1, 1, device=device)

# Establish convention for real and fake labels during training

real_label = 1.0

fake_label = 0.0

# Setup Adam optimizers for both G and D

optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))

optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))

# Training Loop

# Lists to keep track of progress

img_list = []

G_losses = []

D_losses = []

iters = 0

print("Starting Training Loop...")

# For each epoch

for epoch in range(num_epochs):

import time

start = time.time()

# For each batch in the dataloader

for i, data in enumerate(dataloader, 0):

############################

# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))

###########################

## Train with all-real batch

netD.zero_grad()

# Format batch

real_cpu = data[0].to(device)

b_size = real_cpu.size(0)

label = torch.full((b_size,), real_label, device=device)

# Forward pass real batch through D

output = netD(real_cpu).view(-1)

# Calculate loss on all-real batch

errD_real = criterion(output, label)

# Calculate gradients for D in backward pass

errD_real.backward()

D_x = output.mean().item()

## Train with all-fake batch

# Generate batch of latent vectors

noise = torch.randn(b_size, nz, 1, 1, device=device)

# Generate fake image batch with G

fake = netG(noise)

label.fill_(fake_label)

# Classify all fake batch with D

output = netD(fake.detach()).view(-1)

# Calculate D's loss on the all-fake batch

errD_fake = criterion(output, label)

# Calculate the gradients for this batch

errD_fake.backward()

D_G_z1 = output.mean().item()

# Add the gradients from the all-real and all-fake batches

errD = errD_real + errD_fake

# Update D

optimizerD.step()

############################

# (2) Update G network: maximize log(D(G(z)))

###########################

netG.zero_grad()

label.fill_(real_label) # fake labels are real for generator cost

# Since we just updated D, perform another forward pass of all-fake batch through D

output = netD(fake).view(-1)

# Calculate G's loss based on this output

errG = criterion(output, label)

# Calculate gradients for G

errG.backward()

D_G_z2 = output.mean().item()

# Update G

optimizerG.step()

# Output training stats

if i % 50 == 0:

print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'

% (epoch, num_epochs, i, len(dataloader),

errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

# Save Losses for plotting later

G_losses.append(errG.item())

D_losses.append(errD.item())

# Check how the generator is doing by saving G's output on fixed_noise

if (iters % 20 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):

with torch.no_grad():

fake = netG(fixed_noise).detach().cpu()

img_list.append(vutils.make_grid(fake, padding=2, normalize=True))

i = vutils.make_grid(fake, padding=2, normalize=True)

fig = plt.figure(figsize=(8, 8))

plt.imshow(np.transpose(i, (1, 2, 0)))

plt.axis('off') # 关闭坐标轴

plt.savefig("out/%d_%d.png" % (epoch, iters))

plt.close(fig)

iters += 1

print('time:', time.time() - start)

绘制损失曲线

plt.figure(figsize=(10,5))

plt.title("Generator and Discriminator Loss During Training")

plt.plot(G_losses,label="G")

plt.plot(D_losses,label="D")

plt.xlabel("iterations")

plt.ylabel("Loss")

plt.legend()

plt.show()

真假对比

# Grab a batch of real images from the dataloader

# real_batch = next(iter(dataloader))

# Plot the real images

plt.figure(figsize=(15,15))

plt.subplot(1,2,1)

plt.axis("off")

plt.title("Real Images")

plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))

# Plot the fake images from the last epoch

plt.subplot(1,2,2)

plt.axis("off")

plt.title("Fake Images")

plt.imshow(np.transpose(img_list[-1],(1,2,0)))

plt.show()

查看原文