目录

前置信息1、决策树2、样本数据

决策树分类算法1、构建数据集2、数据集信息熵3、信息增益4、构造决策树5、实例化构造决策树6、测试样本分类

后置信息:绘制决策树代码

前置信息

1、决策树

决策树是一种十分常用的分类算法,属于监督学习;也就是给出一批样本,每个样本都有一组属性和一个分类结果。算法通过学习这些样本,得到一个决策树,这个决策树能够对新的数据给出合适的分类

2、样本数据

假设现有用户14名,其个人属性及是否购买某一产品的数据如下:

编号年龄收入范围工作性质信用评级购买决策01<30高不稳定较差否02<30高不稳定好否0330-40高不稳定较差是04>40中等不稳定较差是05>40低稳定较差是06>40低稳定好否0730-40低稳定好是08<30中等不稳定较差否09<30低稳定较差是10>40中等稳定较差是11<30中等稳定好是1230-40中等不稳定好是1330-40高稳定较差是14>40中等不稳定好否

决策树分类算法

1、构建数据集

为了方便处理,对模拟数据按以下规则转换为数值型列表数据: 年龄:<30赋值为0;30-40赋值为1;>40赋值为2 收入:低为0;中为1;高为2 工作性质:不稳定为0;稳定为1 信用评级:差为0;好为1

#创建数据集

def createdataset():

dataSet=[[0,2,0,0,'N'],

[0,2,0,1,'N'],

[1,2,0,0,'Y'],

[2,1,0,0,'Y'],

[2,0,1,0,'Y'],

[2,0,1,1,'N'],

[1,0,1,1,'Y'],

[0,1,0,0,'N'],

[0,0,1,0,'Y'],

[2,1,1,0,'Y'],

[0,1,1,1,'Y'],

[1,1,0,1,'Y'],

[1,2,1,0,'Y'],

[2,1,0,1,'N'],]

labels=['age','income','job','credit']

return dataSet,labels

调用函数,可获得数据:

ds1,lab = createdataset()

print(ds1)

print(lab)

[[0, 2, 0, 0, ‘N’], [0, 2, 0, 1, ‘N’], [1, 2, 0, 0, ‘Y’], [2, 1, 0, 0, ‘Y’], [2, 0, 1, 0, ‘Y’], [2, 0, 1, 1, ‘N’], [1, 0, 1, 1, ‘Y’], [0, 1, 0, 0, ‘N’], [0, 0, 1, 0, ‘Y’], [2, 1, 1, 0, ‘Y’], [0, 1, 1, 1, ‘Y’], [1, 1, 0, 1, ‘Y’], [1, 2, 1, 0, ‘Y’], [2, 1, 0, 1, ‘N’]] [‘age’, ‘income’, ‘job’, ‘credit’]

2、数据集信息熵

信息熵也称为香农熵,是随机变量的期望。度量信息的不确定程度。信息的熵越大,信息就越不容易搞清楚。处理信息就是为了把信息搞清楚,就是熵减少的过程。

def calcShannonEnt(dataSet):

numEntries = len(dataSet)

labelCounts = {}

for featVec in dataSet:

currentLabel = featVec[-1]

if currentLabel not in labelCounts.keys():

labelCounts[currentLabel] = 0

labelCounts[currentLabel] += 1

shannonEnt = 0.0

for key in labelCounts:

prob = float(labelCounts[key])/numEntries

shannonEnt -= prob*log(prob,2)

return shannonEnt

样本数据信息熵:

shan = calcShannonEnt(ds1)

print(shan)

0.9402859586706309

3、信息增益

信息增益:用于度量属性A降低样本集合X熵的贡献大小。信息增益越大,越适于对X分类。

def chooseBestFeatureToSplit(dataSet):

numFeatures = len(dataSet[0])-1

baseEntropy = calcShannonEnt(dataSet)

bestInfoGain = 0.0;bestFeature = -1

for i in range(numFeatures):

featList = [example[i] for example in dataSet]

uniqueVals = set(featList)

newEntroy = 0.0

for value in uniqueVals:

subDataSet = splitDataSet(dataSet, i, value)

prop = len(subDataSet)/float(len(dataSet))

newEntroy += prop * calcShannonEnt(subDataSet)

infoGain = baseEntropy - newEntroy

if(infoGain > bestInfoGain):

bestInfoGain = infoGain

bestFeature = i

return bestFeature

以上代码实现了基于信息熵增益的ID3决策树学习算法。其核心逻辑原理是:依次选取属性集中的每一个属性,将样本集按照此属性的取值分割为若干个子集;对这些子集计算信息熵,其与样本的信息熵的差,即为按照此属性分割的信息熵增益;找出所有增益中最大的那一个对应的属性,就是用于分割样本集的属性。

计算样本最佳的分割样本属性,结果显示为第0列,即age属性:

col = chooseBestFeatureToSplit(ds1)

col

0

4、构造决策树

def majorityCnt(classList):

classCount = {}

for vote in classList:

if vote not in classCount.keys():classCount[vote] = 0

classCount[vote] += 1

sortedClassCount = sorted(classList.iteritems(),key=operator.itemgetter(1),reverse=True)#利用operator操作键值排序字典

return sortedClassCount[0][0]

#创建树的函数

def createTree(dataSet,labels):

classList = [example[-1] for example in dataSet]

if classList.count(classList[0]) == len(classList):

return classList[0]

if len(dataSet[0]) == 1:

return majorityCnt(classList)

bestFeat = chooseBestFeatureToSplit(dataSet)

bestFeatLabel = labels[bestFeat]

myTree = {bestFeatLabel:{}}

del(labels[bestFeat])

featValues = [example[bestFeat] for example in dataSet]

uniqueVals = set(featValues)

for value in uniqueVals:

subLabels = labels[:]

myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)

return myTree

majorityCnt函数用于处理一下情况:最终的理想决策树应该沿着决策分支到达最底端时,所有的样本应该都是相同的分类结果。但是真实样本中难免会出现所有属性一致但分类结果不一样的情况,此时majorityCnt将这类样本的分类标签都调整为出现次数最多的那一个分类结果。

createTree是核心任务函数,它对所有的属性依次调用ID3信息熵增益算法进行计算处理,最终生成决策树。

5、实例化构造决策树

利用样本数据构造决策树:

Tree = createTree(ds1, lab)

print("样本数据决策树:")

print(Tree)

样本数据决策树: {‘age’: {0: {‘job’: {0: ‘N’, 1: ‘Y’}}, 1: ‘Y’, 2: {‘credit’: {0: ‘Y’, 1: ‘N’}}}}

6、测试样本分类

给出一个新的用户信息,判断ta是否购买某一产品:

年龄收入范围工作性质信用评级<30低稳定好<30高不稳定好

def classify(inputtree,featlabels,testvec):

firststr = list(inputtree.keys())[0]

seconddict = inputtree[firststr]

featindex = featlabels.index(firststr)

for key in seconddict.keys():

if testvec[featindex]==key:

if type(seconddict[key]).__name__=='dict':

classlabel=classify(seconddict[key],featlabels,testvec)

else:

classlabel=seconddict[key]

return classlabel

labels=['age','income','job','credit']

tsvec=[0,0,1,1]

print('result:',classify(Tree,labels,tsvec))

tsvec1=[0,2,0,1]

print('result1:',classify(Tree,labels,tsvec1))

result: Y result1: N

后置信息:绘制决策树代码

以下代码用于绘制决策树图形,非决策树算法重点,有兴趣可参考学习

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")

leafNode = dict(boxstyle="round4", fc="0.8")

arrow_args = dict(arrowstyle="<-")

#获取叶节点的数目

def getNumLeafs(myTree):

numLeafs = 0

firstStr = list(myTree.keys())[0]

secondDict = myTree[firstStr]

for key in secondDict.keys():

if type(secondDict[key]).__name__=='dict':#测试节点的数据是否为字典,以此判断是否为叶节点

numLeafs += getNumLeafs(secondDict[key])

else: numLeafs +=1

return numLeafs

#获取树的层数

def getTreeDepth(myTree):

maxDepth = 0

firstStr = list(myTree.keys())[0]

secondDict = myTree[firstStr]

for key in secondDict.keys():

if type(secondDict[key]).__name__=='dict':#测试节点的数据是否为字典,以此判断是否为叶节点

thisDepth = 1 + getTreeDepth(secondDict[key])

else: thisDepth = 1

if thisDepth > maxDepth: maxDepth = thisDepth

return maxDepth

#绘制节点

def plotNode(nodeTxt, centerPt, parentPt, nodeType):

createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',

xytext=centerPt, textcoords='axes fraction',

va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )

#绘制连接线

def plotMidText(cntrPt, parentPt, txtString):

xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]

yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]

createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

#绘制树结构

def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on

numLeafs = getNumLeafs(myTree) #this determines the x width of this tree

depth = getTreeDepth(myTree)

firstStr = list(myTree.keys())[0] #the text label for this node should be this

cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)

plotMidText(cntrPt, parentPt, nodeTxt)

plotNode(firstStr, cntrPt, parentPt, decisionNode)

secondDict = myTree[firstStr]

plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD

for key in secondDict.keys():

if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes

plotTree(secondDict[key],cntrPt,str(key)) #recursion

else: #it's a leaf node print the leaf node

plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW

plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)

plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))

plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

#创建决策树图形

def createPlot(inTree):

fig = plt.figure(1, facecolor='white')

fig.clf()

axprops = dict(xticks=[], yticks=[])

createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) #no ticks

#createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses

plotTree.totalW = float(getNumLeafs(inTree))

plotTree.totalD = float(getTreeDepth(inTree))

plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;

plotTree(inTree, (0.5,1.0), '')

plt.savefig('决策树.png',dpi=300,bbox_inches='tight')

plt.show()

查看原文